This paper exploits an effective approach to overcome the breakdown limitations of traditional galvanic isolators based on chip-scale isolation barriers, thus achieving a very high isolation rating (i.e., compliant with the reinforced isolation requirements). Such an approach is based on radio frequency (RF) planar coupling between two side-by-side co-packaged chips. Standard packaging along with proper assembling techniques can be profitably used to go beyond 20-kV surge voltage without using expensive or exotic isolation components. As a proof of concept, a bidirectional data transfer system based on RF planar coupling able to withstand an isolation rating as high as 25 kV has been designed in a low-cost standard 0.35-µm CMOS technology. Experimental measurements demonstrated a maximum data rate of 40 Mbit/s using a carrier frequency of about 1 GHz. The adopted approach also guarantees a common mode transient immunity (CMTI) of 250 kV/µs, which is a first-rate performance in view of next generation galvanic isolators for wide-bandgap power semiconductor devices, such as gallium nitride high-electron mobility transistors (GaN HEMTs) and silicon carbide (SiC) MOSFETs.
This paper presents the design of on-chip micro-antennas for package-scale galvanic isolators based on RF planar coupling. A step-by-step design procedure is proposed, which aims at the maximization of the weak electromagnetic coupling between the RX and TX antennas integrated on side-by-side co-packaged chips to enable both high isolation rating and common-mode transient immunity thanks to the high dielectric strength and low capacitive parasitics of a molding compound-based galvanic barrier, respectively. Micro-antenna design guidelines are drawn, highlighting the main relationship between coil coupling performance and their layout parameters, which are often in contrast with respect to traditional integrated inductor ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.