This book aims to bridge the gap between practising mathematicians and the practitioners of turbulence theory. It presents the mathematical theory of turbulence to engineers and physicists, and the physical theory of turbulence to mathematicians. The book is the result of many years of research by the authors to analyse turbulence using Sobolev spaces and functional analysis. In this way the authors have recovered parts of the conventional theory of turbulence, deriving rigorously from the Navier–Stokes equations what had been arrived at earlier by phenomenological arguments. The mathematical technicalities are kept to a minimum within the book, enabling the language to be at a level understood by a broad audience. Each chapter is accompanied by appendices giving full details of the mathematical proofs and subtleties. This unique presentation should ensure a volume of interest to mathematicians, engineers and physicists.
Research on the abstract properties of the Navier–Stokes equations in three dimensions has cast a new light on the time-asymptotic approximate solutions of those equations. Here heuristic arguments, based on the rigorous results of that research, are used to show the intimate relationship between the sufficient number of degrees of freedom describing fluid flow and the bound on the fractal dimension of the Navier–Stokes attractor. In particular it is demonstrated how the conventional estimate of the number of degrees of freedom, based on purely physical and dimensional arguments, can be obtained from the properties of the Navier–Stokes equation. Also the Reynolds-number dependence of the sufficient number of degrees of freedom and of the dimension of the attractor in function space is elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.