Films of silicon dioxide (SiO2) were deposited at room temperature by means of catalyzed binary reaction sequence chemistry. The binary reaction SiCl4 + 2H2O --> SiO2 + 4HCl was separated into SiCl4 and H2O half-reactions, and the half-reactions were then performed in an ABAB ellipsis sequence and catalyzed with pyridine. The pyridine catalyst lowered the deposition temperature from >600 to 300 kelvin and reduced the reactant flux required for complete reactions from approximately 10(9) to approximately 10(4) Langmuirs. Growth rates of approximately 2.1 angstroms per AB reaction cycle were obtained at room temperature for reactant pressures of 15 millitorr and 60-second exposure times with 200 millitorr of pyridine. This catalytic technique may be general and should facilitate the chemical vapor deposition of other oxide and nitride materials.
SiO 2 thin films were deposited with atomic layer control using self-limiting surface reactions. The SiO 2 growth was achieved by separating the binary reaction SiCl 4+ 2H 2 O → SiO 2+ 4HCl into two half-reactions. Successive application of the half-reactions in an ABAB… sequence produced atomic-layer-controlled SiO 2 deposition. SiO 2 films were grown at temperatures of 600–800 K, with SiCl 4 and H 2 O reactant exposures of ~109 L ( 1 L = 10-6 Torr s). Employing pyridine ( C 5 H 5 N ) as a catalyst, the SiO 2 films could be deposited at much lower temperatures and reactant exposures. The pyridine catalyst lowered the required SiO 2 deposition temperature from 600 K to 300 K and reduced the reactant exposure required for complete reactions from ~109 L to ~ 104 L. In addition, the SiO 2 growth rates increased from 0.75 Å per AB cycle at 800 K to 2.1 Aring; per AB cycle at 300 K. The deposited films were stoichiometric SiO 2 and were extremely flat, with a roughness nearly identical to the initial substrate surface. The films also displayed dielectric breakdown strengths similar to thermally deposited SiO 2 films. The ability to deposit conformal SiO 2 thin films with atomic layer control over a wide range of temperatures should find numerous applications in thin film device fabrication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.