Applied mechanics 25 V. Ol'shanskii, O. Spol'nik, M. Slipchenko, V. Znaidiuk, 2019 19. A numerical analysis of non-linear contact tasks for the system of plates with a bolted connection and a clearance in the fixture / Atroshenko O., Bondarenko O., Ustinenko O., Tkachuk M., Diomina N. // Eastern-European Journal of Enterprise Technologies. . Thin walled structures: analysis of the stressed strained state and parameter validation / Tkachuk M., Bondarenko M., Grabovskiy A., Sheychenko R., Graborov R., Posohov V. et. al. // Eastern21. Numerical methods for contact analysis of complex-shaped bodies with account for non-linear interface layers / Tkachuk M. M., Skripchenko N., Tkachuk M. A., Grabovskiy A. // Eastern Розглянуто пружний прямий удар по плоскiй границi нерухомого пiвпростору тiла, обмеженого в зонi контактної взаємодiї поверхнею обертання, порядок якої менший двох. Особливiсть задачi полягає в тому, що для вибраного випадку нескiнченна кривизна граничної поверхнi в точцi первiсного контакту, з якої розпочинається процес динамiчного стискання тiл у часi. Крiм основних припущень не хвильової квазистатичної теорiї пружного удару твердих тiл, тут використано також вiдомий розв'язок статичної вiсесиметричної контактної задачi теорiї пружностi. Процес удару з невеликою початковою швидкiстю подiлено на два етапи, а саме на динамiчне стискання i динамiчне розтискання. Для кожного з них побудовано аналiтичний розв'язок нелiнiйного диференцiального рiвняння вiдносного зближення у часi центрiв мас тiл. Розв'язок нелiнiйної задачi з початковими умовами для диференцiального рiвняння другого порядку на першому етапi виражено через Ateb-синус, а на другому -через Ateb-косинус. Для спрощення розрахункiв складено окремi таблицi вказаних спецiальних функцiй, а також запропоновано компактнi апроксимацiї їх елементарними функцiями. Встановлено, що похибка аналiтичних наближень обох спецiальних функцiй менша одного вiдсотка. Виведено також замкненi вирази для обчислень максимальних значень: стискання тiл, сили удару, радiуса кругової площадки контакту та тиску, який обмежений у центрi цiєї площадки. Розглянуто числовий приклад, пов'язаний з ударом жорсткого пружного тiла по гумовому пiвпростору. Задачi такого типу виникають при моделюваннi динамiчної дiї кускiв твердої мiнеральної сировини на гуму, при падiннi їх на футерованi гумою валки вiбрацiйного класифiкатора. Внаслiдок порiвняння розрахованих параметрiв удару, одержано гарну узгодженiсть числових результатiв, до яких призводять побудованi аналiтичнi розв'язки та iнтегрування нелiнiйного рiвняння на комп'ютерi. Цим пiдтверджена вiрогiднiсть побудованих аналiтичних розв'язкiв задачi удару, якi дають розгортку короткочасного процесу в часiКлючовi слова: пружний удар, особлива точка на поверхнi контакту, перiодичнi Ateb-функцiї UDC 534.1:539.3
The article is devoted to the derivation of formulas for calculating the ranges of free damped oscillations of a double nonlinear oscillator. Using the Lambert function and the first integral of the nonlinear differential equation of motion, formulas are derived for calculating the ranges of free damped oscillations of a linearly elastic oscillator under the combined action of the forces of quadratic viscous resistance and Coulomb dry friction. The calculations involve a table of the specified special function of the negative argument. It is shown that the presence of viscous resistance reduces the duration of free oscillations to a complete stop of the oscillator. The set dynamics problem is also approximately solved by the energy balance method, and a numerical integration of the nonlinear differential equation of motion on a computer is carried out. The satisfactory convergence of the numerical results obtained in various ways confirmed the suitability of the derived closed formulas for engineering calculations. In addition to calculating the magnitude of the oscillations, the energy balance method is also used for an approximate solution of the inverse problem of dynamics, by identifying the values of the coefficient of quadratic resistance and dry friction force in the presence of an experimental vibrogram of free damped oscillations. An example of identification is given. This information on friction is needed to calculate forced oscillations, especially under resonance conditions. It is noted that from the obtained results, in some cases, well-known formulas follow, where the quadratic viscous resistance is not associated with dry friction.
An oscillator damped by viscous linear resistance, due to the instantaneous increase in its mass after impact, can become a dissipative oscillatory system under the action of dry or positional friction. In the article describes the oscillations of a dissipative oscillator with an asymmetric quadratically nonlinear elastic characteristic and dry Coulomb friction, arising as a result of an inelastic vertical impact of a rigid body on it. In the article, the Cox model is used, which does not take into account local deformations of solid bodies subjected to impact. The paper establishes the dependences on the impact velocity and the values of other parameters at which the effect of asymmetry of the elastic characteristic of the system may appear or may not appear. The conditions are derived when the dynamic effect of asymmetry of the power characteristic is manifested in the system. It consists in the fact that the maximum displacement of the oscillator (oscillation range) in the direction of the shock pulse is less than the opposite extreme displacement (range) after the shock oscillations. The existence of such a critical value of the shock impulse is established, the excess of which leads to the loss of motion stability. The second integral of the oscillation equation describes the movement of the oscillator in time, expressed in terms of Jacobi elliptic functions. An approximate formula for their calculation is proposed. Formulas are also derived to determine the time to reach extreme deviations of the system from the equilibrium position. This time is expressed in terms of elliptic integrals of the first kind, which refer to the tabulated functions. Examples of calculations are considered, where, in addition to using the derived formulas, numerical computer integration of the original nonlinear differential equation of motion is carried out. A comparison of the results obtained for the displacement values of a quadratically nonlinear oscillator with dry friction expressed in terms of Jacobi elliptic functions and obtained by numerical integration is carried out. Good consistency of the calculation results in two ways confirmed the adequacy of the obtained analytical solutions of the nonlinear Cauchy problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.