The aim of the paper was to investigate the effect of austempering parameters (time and temperature) on the microstructure and mechanical properties of ADI alloyed with 1.5% Cu and 1.6% Ni (in wt.%) in order to establish the optimal processing window. It was shown that the strength, elongation and impact energy strongly depend on the amounts of ausferritic ferrite and retained austenite. A processing window was established according to the results of the kinetics of the isothermal transformation. The results show that the processing window for ADI alloyed with Cu and Ni at 350°C was relatively wide, while the processing window for the isothermal transformation at 400°C becomes narrower and shifted to the left. The processing window of ADI austempered at 300°C is also narrower, but shifted to the right towards the longer times compared to the processing window of ADI austempered at 350°C.
In this paper, selective laser melting fabricated specimens in non-heat-treated and heat-treated conditions were subjected to Vickers microhardness testing, by using a full range of loadings: 10, 25, 50, 100, 200, 300, 500, and 1000 g. Microhardness of longitudinal sections and cross-sections were correlated and the obtained values were plotted against loadings and indentation size effect was studied, in order to find the optimal loading range, that gives the material true microhardness, or load-independent hardness. The load dependence of the measured Vickers hardness values was described quantitatively through the application of the Meyer’s law, proportional specimen resistance, and the modified proportional specimen resistance model. It was found that the microhardness rises as the loading is higher, causing a reversed indentation size effect, clearly indicating the range of true hardnesses of the tested material. Also, proportional specimen resistance and modified proportional specimen resistance models were found to have the highest correlation factors indicating their higher adequacy compared to Meyer’s prediction model.
Austempered ductile iron (ADI) is an advanced cast iron material that has a broad field of application and, among others, it is used in contact and for conveyance of fluids. However, it is noticed that in contact with some fluids, especially water, ADI material becomes brittle. The most significant decrease is established for the elongation. However, the influence of water and the cause of this phenomenon is still not fully understood. For that reason, in this paper, the influence of different water concentrations in ethyl alcohol on the mechanical properties of ADI materials was studied. The test was performed on two different types of ADI materials in 0.2, 4, 10, and 100 vol.% water concentration environments, and in dry condition. It was found that even the smallest concentration of water (0.2 vol.%) causes formation of the embrittled zone at fracture surface. However, not all mechanical properties were affected equally and not all water concentrations have been critical. The highest deterioration was established in the elongation, followed by the ultimate tensile strength, while the proof strength was affected least.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.