No abstract
Can personality traits be measured and interpreted reliably across the world? While the use of Big Five personality measures is increasingly common across social sciences, their validity outside of western, educated, industrialized, rich, and democratic (WEIRD) populations is unclear. Adopting a comprehensive psychometric approach to analyze 29 face-to-face surveys from 94,751 respondents in 23 low- and middle-income countries, we show that commonly used personality questions generally fail to measure the intended personality traits and show low validity. These findings contrast with the much higher validity of these measures attained in internet surveys of 198,356 self-selected respondents from the same countries. We discuss how systematic response patterns, enumerator interactions, and low education levels can collectively distort personality measures when assessed in large-scale surveys. Our results highlight the risk of misinterpreting Big Five survey data and provide a warning against naïve interpretations of personality traits without evidence of their validity.
Considerable effort has been exercised recently in estimating mean returns to education while carefully considering biases arising from unmeasured ability and measurement error. Some of this work has also attempted to determine whether there are variations from the "mean" return to education across the population with mixed results. In this paper, we use recent extensions of instrumental variables techniques to quantile regression on a sample of twins to estimate an entire family of returns to education at different quantiles of the conditional distribution of wages while addressing simultaneity and measurement error biases. We test whether there is individual heterogeneity in returns to education against the alternative that there is a constant return for all workers. Our estimated model provides evidence of two sources of heterogeneity in returns to schooling. First, there is evidence of a differential effect by which more able individuals become better educated because they face lower marginal costs of schooling. Second, once this endogeneity bias is accounted for, our results provide evidence of the existence of actual heterogeneity in market returns to education consistent with a non-trivial interaction between schooling and unobserved abilities in the generation of earnings. The evidence suggests that higher ability individuals (those further to the right in the conditional distribution of wages) have higher returns to schooling but that returns vary significantly only along the lower quantiles to middle quantiles. In our final approach, the resulting estimated returns are never lower than 9 percent and can be as high as 13 percent at the top of the conditional distribution of wages, thus providing rather tight bounds on the true return to schooling. Our findings have meaningful implications for the design of educational policies.JEL Classification: C14, I2, J24, J31
Some rights reserved 1 2 3 4 17 16 15 14 This work is a product of the staff of The World Bank with external contributions. Note that The World Bank does not necessarily own each component of the content included in the work. The World Bank therefore does not warrant that the use of the content contained in the work will not infringe on the rights of third parties. The risk of claims resulting from such infringement rests solely with you. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Nothing herein shall constitute or be considered to be a limitation upon or waiver of the privileges and immunities of The World Bank, all of which are specifically reserved.
Some rights reserved 1 2 3 4 17 16 15 14 This work is a product of the staff of The World Bank with external contributions. Note that The World Bank does not necessarily own each component of the content included in the work. The World Bank therefore does not warrant that the use of the content contained in the work will not infringe on the rights of third parties. The risk of claims resulting from such infringement rests solely with you.The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries.Nothing herein shall constitute or be considered to be a limitation upon or waiver of the privileges and immunities of The World Bank, all of which are specifically reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.