In this work, an optimization of the InGaP/GaAs dual-junction (DJ) solar cell performance is presented. Firstly, a design for the DJ solar cell based on the GaAs tunnel diode is provided. Secondly, the used device simulator is calibrated with recent experimental results of an InGaP/GaAs DJ solar cell. After that, the optimization of the DJ solar cell performance is carried out for two different materials of the top window layer, AlGaAs and AlGaInP. For AlGaAs, the optimization is carried out for the following: aluminum (Al) mole fraction, top window thickness, top base thickness, and bottom BSF doping and thickness. The electrical performance parameters of the optimized cell are extracted: J SC = 18.23 mA / c m 2 , V OC = 2.33 V , FF = 86.42 % , and the conversion efficiency ( η c ) equals 36.71%. By using AlGaInP as a top cell window, the electrical performance parameters for the optimized cell are J SC = 19.84 mA / c m 2 , V OC = 2.32 V , FF = 83.9 % , and η c = 38.53 % . So, AlGaInP is found to be the optimum material for the InGaP/GaAs DJ cell top window layer as it gives 4% higher conversion efficiency under 1 sun of the standard AM1.5G solar spectrum at 300 K in comparison with recent literature results. All optimization steps and simulation results are carried out using the SLVACO TCAD tool.
High-efficiency solar cells with low manufacturing costs have been recently accomplished utilizing different technologies. III-V-based tandem solar cells have exhibited performance enhancement with a recent efficiency of greater than 39% under AM1.5G and 47% under concentration. Integration of such III-V materials on a relatively cheap Silicon (Si) substrate is a potential pathway to fabricate high-efficient low-cost tandem solar cells. Besides, perovskite solar cells, as third-generation thin film photovoltaics (PV), have been meteorically developed at a reasonable cost. At present, there are still questions for cost reduction of perovskite materials and solar cell modules because of their limited commercialization. In this review, stacking Si solar cells with III-V material to form Si-based III-V tandem solar cells is presented with different integration technological routes. Also, perovskite/Si tandem solar cells have been reviewed alongside their main engineering challenges introduced through the fabrication of perovskite-based tandem solar cells. Finally, a comparison between III-V tandem solar cells, Si-based III-V tandem solar cells, and perovskite-based tandem solar cells is introduced so that the best technology for a specific application could be determined. The review provides a comprehensive study of two different technologies (III/V and Perovskite) to demonstrate the most valuable cost reduction availability for each.
With the aim of achieving high efficiency, cost-effectiveness, and reliability of solar cells, several technologies have been studied. Recently, emerging materials have appeared to replace Si-based cells, seeking economic fabrication of solar cells. Thin-film solar cells (TFSCs) are considered strong candidates for this mission, specifically perovskite-based solar cells, reporting competitive power convergence efficiencies reaching up to 25.7%. Substantial efforts have been invested in experimental and research work to surpass the Si-based cells performance. Simulation analysis is a major tool in achieving this target by detecting design problems and providing possible solutions. Usually, a TFSC adopts p-i-n heterojunction architecture by employing carrier transport materials along with the absorber material in order to extract the photogenerated electrons and holes by realizing a built-in electric field. Eventually, this dependency of conventional heterojunction TFSCs on carrier transport layers results in cost-ineffective cells and increases the possibility of device instability and interface problems. Thus, the design of p-n homojunction TFSCs is highly desirable as an essential direction of structural innovation to realize efficient solar cell operation. In this review, a summary of the fundamentals of TFSC materials, recent design and technology progress, and methodologies for improving the device performance using experimental research studies will be discussed. Further, simulation analysis will be provided by demonstrating the latest research work outcomes, highlighting the major achievements and the most common challenges facing thin film homojunction solar cell structures and the methods to improve them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.