Different anatomical structures and pathophysiological functions can be responsible for lumbar pain, each producing a distinctive clinical profile. Pain can arise from the intervertebral disc, either acutely as a primary disc related disorder, or as result of the degradation associated with chronic internal disc disruption. In either case, greatest pain provocation will be associated with movements and functions in the sagittal plane. Lumbar pain can also arise from afflictions within the zygapophyseal joint mechanism, as result of synovitis or chondropathy. Either of these conditions will produce the greatest pain provocation during three-dimensional movements, due to maximal stress to either the synovium or joint cartilage. Finally, patients can experience different symptoms associated with irritation to the dural sleeve, dorsal root ganglion, or chemically irritated lumbar nerve root. Differential diagnosis of these conditions requires a thorough examination and provides information that can assist the clinician in selecting appropriate management strategies.
Pain originating from spinal nerve roots demonstrates multiple pathogeneses. Distinctions in the pathoanatomy, biomechanics, and pathophysiology of spinal nerve roots contribute to pathology, diagnosis, and management of root-related pain. Root-related pain can emerge from the tension events in the dura mater and nerve tissue associated with primary disc related disorders. Conversely, secondary disc-related degeneration can produce compression on the nerve roots. This compression can result in chemical and mechanical consequences imposed on the nervous tissue within the spinal canal, lateral recess, intervertebral foramina, and extraforminal regions. Differences in root-related pathology can be observed between lumbar, thoracic, and cervical spinal levels, meriting the implementation of different diagnostic tools and management strategies.
Both VPAC strategies produced a co-contractive MF response, which appears to be important for lumbar segmental stabilization and control. Analysis of the results suggests that VPAC strategies are appropriate for coactivating the MF, which can enhance spinal protection and rehabilitation responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.