Demethylation inhibitor (DMI)-resistant strains of the plant pathogenic fungus Penicillium digitatum were shown to be simultaneously resistant to cycloheximide, 4-nitroquinoline-N-oxide (4NQO), and acriflavine. APMR1 (Penicillium multidrug resistance) gene encoding an ATP-binding cassette (ABC) transporter (P-glycoprotein) was cloned from a genomic DNA library of a DMI-resistant strain (LC2) ofPenicillium digitatum by heterologous hybridization with a DNA fragment containing an ABC-encoding region from Botrytis cinerea. Sequence analysis revealed significant amino acid homology to the primary structures of PMR1 (protein encoded by thePMR1 gene) and ABC transporters of Saccharomyces cerevisiae (PDR5 and SNQ2), Schizosaccharomyces pombe(HBA2), Candida albicans (CDR1), and Aspergillus nidulans (AtrA and AtrB). Disruption of the PMR1 gene of P. digitatum DMI-resistant strain LC2 demonstrated that PMR1 was an important determinant of resistance to DMIs. The effective concentrations inhibiting radial growth by 50% (EC50s) and the MICs of fenarimol and bitertanol for the PMR1disruptants (Δpmr1 mutants) were equivalent to those for DMI-sensitive strains. Northern blot analysis indicated that severalfold more PMR1 transcript accumulated in the DMI-resistant strains compared with those in DMI-sensitive strains in the absence of fungicide. In both DMI-resistant and -sensitive strains, transcription of PMR1 was strongly enhanced within 10 min after treatment with the DMI fungicide triflumizole. These results suggested that the toxicant efflux system comprised of PMR1 participates directly in the DMI resistance of the fungus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.