We introduced a novel water-gated field effect transistor (WG-FET) which uses 16-nm-thick mono-Si film as active layer. WG-FET devices use electrical double layer (EDL) as gate insulator and operate under 1 V without causing any electrochemical reactions. Performance parameters based on voltage distribution on EDL are extracted and current-voltage relations are modelled. Both probe- and planar-gate WG-FETs with insulated and uninsulated source-drain electrodes are simulated, fabricated and tested. Best on/off ratios are measured for probe-gate devices as 23,000 A/A and 85,000 A/A with insulated and uninsulated source-drain electrodes, respectively. Planar-gate devices with source-drain insulation had inferior on/off ratio of 1,100 A/A with 600 μm gate distance and it decreased to 45 A/A when gate distance is increased to 3000 μm. Without source-drain electrode insulation, proper transistor operation is not obtained with planar-gate devices. All measurement results were in agreement with theoretical models. WG-FET is a promising device platform for microfluidic applications where sensors and read-out circuits can be integrated at transistor level.
This paper presents the effect of NaCl concentration on the operation of a water-gated field effect transistor (WG-FET) that uses 16-nm-thick single crystalline silicon (Si) film. In WG-FET, electrical double layer (EDL) formed at the water/silicon interface behaves as gate dielectric and this fluidic interface makes WG-FET a suitable device for sensing applications. Characteristics of EDL and the threshold voltage of WG-FET depend on the molarity of solution. Increasing the molarity of NaCl solution from 0.5 to 65 mM changes the threshold voltage from 360 to 465 mV. Accordingly, drain current of the WG-FET device changes with NaCl concentration.
In this paper, we propose a corrosion assisted exfoliation method as an improvement to the traditional tape exfoliation to obtain transition-metal dichalcogenide monolayers. Our method primarily relies on the electrochemical potential difference between transition metals and aluminum. The assistance of bubbles resulting from the bimetallic corrosion increases the yield of the exfoliation process for monolayers by 30-fold while boosting the probability of obtaining isolated monolayers. We use Raman measurements and a statistical comparison of the improved method with tape exfoliation to lay the evidence for our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.