Near-infrared detectors based on metal-insulator-metal tunnel junctions integrated with planarized silicon nanowire waveguides are presented, which we believe to be the first of their kind. The junction is coupled to the waveguide via a thin-film metal antenna feeding a plasmonic travelling wave structure that includes the tunnel junction. These devices are inherently broadband; the design presented here operates throughout the 1500-1700 nm region. Careful design of the antenna and travelling wave region substantially eliminates losses due to poor mode matching and RC rolloff, allowing efficient operation. The antennas are made from multilayer stacks of gold and nickel, and the active devices are Ni-NiO-Ni edge junctions. The waveguides are made via shallow trench isolation technology, resulting in a planar oxide surface with the waveguides buried a few nanometres beneath.The antennas are fabricated using directional deposition through a suspended Ge shadow mask, using a single level of electron-beam lithography. The waveguides are patterned with conventional 248-nm optical lithography and reactive-ion etching, then planarized using shallow-trench isolation technology. We also present measurements showing overall quantum efficiencies of 6% (responsivity 0.08 A/W at 1.605 mum), thus demonstrating that the previously very low overall quantum efficiencies reported for antenna-coupled tunnel junction devices are due to poor electromagnetic coupling and poor choices of antenna metal, not to any inherent limitations of the technology.
ABSTRACT:The miniaturization of microelectronic devices has created a demand for new low-dielectric-constant materials to be used as insulating layers between metal interconnects. In this study, a functionalized polynorbornene consisting of a copolymer of decyl norbornene and epoxide norbornene has been investigated as a low-temperature curing dielectric. Polynorbornenes possess properties that are attractive for microelectronics packaging; however, films of these polymers must be crosslinked in order to obtain the solvent resistance and low solvent swelling necessary for multilayer applications. Crosslinking of these materials was achieved by acid-catalyzed cationic crosslinking of epoxide side groups. The reactions that occurred during higher temperature curing of epoxy functionalized norbornene films were studied using Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis. Epoxide crosslinking and epoxide decomposition reactions were identified and studied as a function of temperature and time.
ABSTRACT:In the microelectronics industry, the drive for increasing device speed, level of functionality and shrinking size has placed significant demands on the performance characteristics of polymer dielectrics. In this study, a negative acting, photodefinable dielectric formulation based on a copolymer of decylnorborne (decylNB) and epoxynorbornene (AGENB) was investigated for use in electronics packaging. The structure-property relations of this copolymer were investigated. Copolymer composition and processing conditions were shown to significantly affect the properties of the final polymer films. A lower content of AGENB results in lower moisture absorption, dielectric constant, modulus and residual stress, but it compromises multilayer capability. High crosslink density lowers the dielectric constant but increases the modulus and residual stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.