As the demand for flip-chip interconnects mounts across an increasingly large spectrum of products and technologies, several wafer-bumping processes have been developed to produce the small solder features required for this interconnect technology. These processes differ significantly in complexity and commensurate cost. Recently, a new bumping process developed at IBM Research called injection-molded solder, or IMS, has shown the capability to combine low-cost attributes with high-end capabilities. The development of IMS technology was driven by the need to reduce wafer-bumping costs while simultaneously addressing the conflicting needs of increasing wafer dimensions to 300 mm, decreasing bump and pitch dimensions below 75 lm on 150-lm centers, and optimal Pb-free alloy selection and processing. This paper describes IMS technology for both standard eutectic SnPb and Pb-free wafer bumping. Existing mainstream bumping technologies are also reviewed, with a focus on the challenges of new industry requirements. Early manufacturing challenges are addressed, including solutions that demonstrated the appropriateness of IMS technology for low-cost 300-mm Pb and Pb-free wafer bumping. Early process and reliability data are also reviewed.
Controlled Collapse Chip Connection -New Process (C4NP) technology is a novel solder bumping technology developed by IBM to address the limitations of existing bumping technologies. Through continuous improvements in processes, materials and defect control, C4NP technology has been successfully implemented at IBM in the manufacturing of all 300mm Pb-free solder bumped wafers. Both 200 µm and 150 µm pitch products have been qualified and are currently ramping up volume production.Extendibility of C4NP to 50 µm ultra-fine pitch microbump application has been successfully demonstrated with the existing C4NP manufacturing tools. Targeted applications for microbumps are three-dimensional (3D) chip integration and the conversion of memory wafers from wirebonding (WB) to C4 bumping. The metrology data on solder volume, bump height, defect and yield have been characterized by RVSI inspection. This paper reviews the C4NP processes from mold manufacturing, solder fill and solder transfer onto 300 mm wafers, along with defect and yield analysis. Reliability challenges as well as solutions in the development and qualification of flip chip Pb-free solder joint are also reviewed. In addition to a suitable under bump metallurgy (UBM), a robust lead-free solder alloy with precisely controlled composition and special alloy doping is needed to enhance performance and reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.