A coherent receiver based on a 120° downconverter architecture, inherited from previous approaches at the microwave and optical fields, is proposed, analyzed, numerically evaluated and compared to the conventional 90° downconverter alternative. It is shown that, due to its superior calibration procedure, the new downconverter architecture allows full compensation of the imbalances in its optical front-end thus leading to an extended dynamic range and a broader operating bandwidth than its 90° counterpart. Simulation results from monolithically integrated downconverters show that our approach can be an interesting alternative to support efficient modulation schemes such as M-QAM that is being studied as potential candidate for the next generation of optical communication systems.
Conventional monolithically integrated 90° downconverter suffers from hardware-induced non-linear constellation distortion, which gets worse far away from the central wavelength or when fabrication errors are taken into account. To overcome these problems, a 120° monolithically integrated downconverter with full compensation of hardware non-idealities has been proposed. It is numerically demonstrated that, in a realistic scenario exposed to the combined effects of fabrication tolerances and limited ADC resolution, this approach exhibits a significantly better signal dynamic range and a remarkable improvement of fabrication yield.
We numerically demonstrate colorless reception of dense wavelength division multiplexed channels in the C-band for high-order QAM (16-64 QAM) signals on a 120° monolithically integrated downconverter, based on a 2x3 MMI with calibrated analog IQ recovery. It is shown that the proposed calibrated 120° downconverter can increase up to 80 the number of coincident channels in an efficient way, exhibiting good signal dynamic range and high fabrication yield. As this downconverter makes use of the minimum number of power outputs required for perfect recovery of IQ signals, it becomes an interesting alternative to conventional 90° based downconverters.
Many applications, including optical multiplexing, switching, and detection, call for low-cost and broadband photonic devices with polarization-independent operation. While the silicon-on-insulator platform is well positioned to fulfill most of these requirements, its strong birefringence hinders the development of polarization-agnostic devices. Here we leverage the recently proposed bricked metamaterial topology to design, for the first time, to our knowledge, a polarization-independent 2 × 2 multimode interference coupler using standard 220 nm silicon thickness. Our device can be fabricated with a single etch step and is optimized for the O-band, covering a wavelength range of 160 nm with excess loss, polarization-dependent loss, and imbalance below 1 dB and phase errors of less than 5°, as demonstrated with full three-dimensional finite-difference time-domain simulations.
The implementation agreement of the Optical Internet Forum for a dual polarization (DP) I/Q downconverter defines strict requirements for the phase diversity network, resulting in a negligible penalty, but does not specify the extinction ratio (ER) of the polarization beam splitters (PBS) on which the polarization diversity network is based. We propose a novel metric, based on the Frobenius norm of the Jones receiver matrix, to accurately estimate the sensitivity penalty from receiver non-idealities, stablishing a precise interface for hardware specification. Results will be numerically verified for the reception of 112 Gbps DP-QPSK signals in a realistic receiver scenario with subsequent state-of-art DSP algorithms. The proposed metric highlights the benefits of the polarization diversity scheme based on two PBS, compared to the common alternative based on a PBS and a BS, as it achieves an improvement in the receiver sensitivity of at least 3 dB for the same ER. Furthermore, this paper shows than the sensitivity penalty is negligible for an ER higher than 16 dB and that it less than 2 dB for an ER of 8 dB. These results can have an important impact in monolithically integrated DP downconverters in which practical integration of PBS with high ER is still challenging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.