A novel oxime ligand has been synthesized by refluxing 3,3'-diaminobenzedine and phthalaldehyde monoxime. Copper (II), cobalt (II), nickel (II) and manganese (II) binuclear complexes of this ligand have been prepared and characterized by using elemental analysis, molar conductance studies, IR, UV, NMR, EPR and magnetic studies. The molar conductance measurements correspond to a non-electrolytic nature for all complexes which can be formulated as [M2(L)X4] (Where M = Cu(II), Ni(II), Co(II) and Mn(II); X = Cl − ). The UV-visible spectra of all the complexes are well characterized by broad weak d-d band and a high intensity charge-transfer transition. Thermal studies supported the chemical formation of these complexes showed that they decomposed in three or four stages depending on the type of ligand. The far-IR spectrum confirms the presence of coordinate chloride ion in all the complexes as evidenced by one intense far IR bands around 310-330 cm −1 . In electrochemical studies the resulting cyclic voltammogram consists of single quasi-reversible one electron transfer. The ligand and complexes have been screened for their antimicrobial activity against two Gram-positive bacteria, two Gram-negative bacteria and fungi. The binuclear metal complexes were found to possess potent antimicrobial, antifungal activity better than ligand alone.Schiff base Binuclear Oxime Cyclic voltammetry 3,3'-Diaminobenzedine Microbial activity
New binucleating Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) complexes of the prepared ligands with N4 donor were synthesized. The ligands are obtained by the condensation of paraphenylenediamine with diacetylmonoxime and benzilmonoxime. The synthesized ligands and their metal complexes were characterized by elemental analysis and various spectroscopic techniques. The Cu(II), Ni(II) complexes were square planar, VO(II) complex was square pyramidal, whereas Mn(II), Zn(II) complexes were of tedrahedral geometry. Both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration method. The results showed that the metal complexes were found to be more active than free ligand. The DNA binding capacities of all the complexes were analyzed by using UV absorption spectra. The DNA cleaving capacities of all complexes were analyzed by agarose gel electrophoresis method against pBR322 DNA.
KEYWORDS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.