Abstract.A new precession-nutation model for the Celestial Intermediate Pole (CIP) was adopted by the IAU in 2000 (Resolution B1.6). The model, designated IAU 2000A, includes a nutation series for a non-rigid Earth and corrections for the precession rates in longitude and obliquity. The model also specifies numerical values for the pole offsets at J2000.0 between the mean equatorial frame and the Geocentric Celestial Reference System (GCRS). In this paper, we discuss precession models consistent with IAU 2000A precession-nutation (i.e. MHB 2000, provided by Mathews et al. 2002 and we provide a range of expressions that implement them. The final precession model, designated P03, is a possible replacement for the precession component of IAU 2000A, offering improved dynamical consistency and a better basis for future improvement. As a preliminary step, we present our expressions for the currently used precession quantities ζ A , θ A , z A , in agreement with the MHB corrections to the precession rates, that appear in the IERS Conventions 2000. We then discuss a more sophisticated method for improving the precession model of the equator in order that it be compliant with the IAU 2000A model. In contrast to the first method, which is based on corrections to the t terms of the developments for the precession quantities in longitude and obliquity, this method also uses corrections to their higher degree terms. It is essential that this be used in conjunction with an improved model for the ecliptic precession, which is expected, given the known discrepancies in the IAU 1976 expressions, to contribute in a significant way to these higher degree terms. With this aim in view, we have developed new expressions for the motion of the ecliptic with respect to the fixed ecliptic using the developments from Simon et al. (1994) and Williams (1994) and with improved constants fitted to the most recent numerical planetary ephemerides. We have then used these new expressions for the ecliptic together with the MHB corrections to precession rates to solve the precession equations for providing new solution for the precession of the equator that is dynamically consistent and compliant with IAU 2000. A number of perturbing effects have first been removed from the MHB estimates in order to get the physical quantities needed in the equations as integration constants. The equations have then been solved in a similar way to Lieske et al. (1977) and Williams (1994), based on similar theoretical expressions for the contributions to precession rates, revised by using MHB values. Once improved expressions have been obtained for the precession of the ecliptic and the equator, we discuss the most suitable precession quantities to be considered in order to be based on the minimum number of variables and to be the best adapted to the most recent models and observations. Finally we provide developments for these quantities, denoted the P03 solution, including a revised Sidereal Time expression.
The ALMA North American and European prototype antennas have been evaluated by a variety of measurement systems to quantify the major performance specifications. Nearfield holography was used to set the reflector surfaces to 17 µm RMS. Pointing and fast switching performance was determined with an optical telescope and by millimeter wavelength radiometry, yielding 2 ′′ absolute and 0.6 ′′ offset pointing accuracies. Path length stability was measured to be 20 µm over 10 minute time periods using optical measurement devices. Dynamical performance was studied with a set of accelerometers, providing data on wind induced tracking errors and structural deformation. Considering all measurements made during this evaluation, both prototype antennas meet the major ALMA antenna performance specifications.
Abstract. The IAU 2000 precession consists of the IAU 1976 ecliptic precession (Lieske et al. 1977, A&A, 58, 1) and the precession part of the IAU 2000A equator adopted by IAU 2000 Resolution B1.6 , J. Geophys. Res., 107, B4, 10.1029. In this paper we provide a range of new expressions as possible replacements for the IAU 2000 precession. The new expressions are based upon the so-called P03 solution of Capitaine et al. (2003b, A&A, 412, 567) for the equator and the ecliptic. In addition an improved model for the precession of the equator is discussed. This improved solution was obtained in exactly the same way as P03 but using a refined model for the contributions of the non-rigid Earth (Mathews 2004, private communication) and revised integration constants for the precession rates resulting from fits to the most recent VLBI data. The paper reports on the procedure that was used for improving the P03 solution and on the comparisons of this solution with the MHB 2000, IAU 2000 and P03 solutions. It also discusses the choices for the solution to be put forward as a replacement for IAU 2000. We concluded that the existing VLBI data were insufficient to provide convincing evidence that the improved solutions would deliver better accuracy than the existing P03 solution, and we recommend retaining P03 as the replacement for IAU 2000. P03, which unlike the IAU 2000 precession is dynamically consistent, has the advantage of already having been used experimentally by a number of groups; the model is recalled in Tables 3−5. Due to the strong dependence of the precession expressions on the precession rates and of the precession in longitude (or equivalently the celestial CIP X coordinate) on the J 2 rate model, we also provide a parameterized P04 solution for these quantities as functions of those parameters. The expressions include the quantities to be used in both the equinox-based and CIO-based (i.e. referred to the Celestial Intermediate Origin) transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.