The investigation of crosstalk issues for coupled through silicon vias (TSVs) in ternary logic is presented in this study. The crosstalk issues are analyzed for coupled TSVs utilizing multi-walled carbon nanotube (MWCNT) as conductive filler, and polymer liners such as polyimide, polypropylene carbonate, and benzocyclobutene (BCB) as insulating materials. For the coupled TSVs, the electrical equivalent circuit model is used to investigate the crosstalk which is driven by the ternary inverter. Based on the Hewlett simulation program with integrated circuit emphasis simulations, the effects of crosstalk such as functional and dynamic crosstalk for proposed TSVs are compared with single-walled CNT (SWCNT) TSVs. Furthermore, the other performance parameters such as power dissipation, power delay product (PDP), and energy delay product are investigated. The crosstalk effects of the proposed model are also examined for various TSV heights. It is noticed that the BCB based coupled MWCNT TSVs provide a significant improvement in crosstalk at reduced TSV height. It is also noticed that the proposed TSVs improved the overall performance up to 30.21% compared to the SWCNT based TSVs. Hence, the MWCNT based TSVs with BCB liner are most suitable for ternary logic integrated circuits over the conventional TSVs.
Purpose
The purpose of this paper is to design novel tunnel field effect transistor (TFET) using graphene nanoribbons (GNRs).
Design/methodology/approach
To design the proposed TFET, the bilayer GNRs (BLGNRs) have been used as the channel material. The BLGNR-TFET is designed in QuantumATK, depending on 2-D Poisson’s equation and non-equilibrium Green’s function (NEGF) formalism.
Findings
The performance of the proposed BLGNR-TFET is investigated in terms of current and voltage (I-V) characteristics and transconductance. Moreover, the proposed device performance is compared with the monolayer GNR-TFET (MLGNR-TFET). From the simulation results, it is investigated that the BLGNR-TFET shows high current and gain over the MLGNR-TFET.
Originality/value
This paper presents a new technique to design GNR-based TFET for future low power very large-scale integration (VLSI) devices.
We present a technique to improve the crosstalk effects in ternary coupled through silicon vias (TSVs). The effects of crosstalk were investigated in TSVs using multi-walled carbon nanotube (MWCNT) as metallic liner and polymers such as polyimide, polypropylene carbonate, and benzocyclobutene (BCB) as dielectric liners. The circuit model for coupled TSVs driven by a ternary inverter was utilized to analyze the various crosstalk issues. The HSPICE tool was utilized to develop the proposed TSVs. The crosstalk issues for the MWCNT TSVs were investigated and compared to single-walled CNT (SWCNT) TSVs. Moreover, the power, power delay product, and energy delay product were analyzed and compared to SWCNT TSVs. All of the performances were also studied for different TSV pitches. The coupled TSVs with BCB showed high performance for the large pitch values. Moreover, it was noted that the coupled TSVs with BCB at 5000μm TSV pitch improved the performance up to 40.03% over the SWCNT TSVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.