Traditional synthesis techniques optimize CMOS circuits in two phases i) logic minimization and ii) library mapping phase. Typically, the structures and the sizes of the gates in the library are chosen to yield a good synthesis results over many blocks or even for an entire chip. Consequently, this approach precludes an optimal design of individual blocks which may need custom structures. In this paper we present a new transistor bvel technique that optimizes CMOS circuits both structurally and size-wise. Our technique is independent of a library and hence can explore a design space much larger than that possible due to gate level optimization. Results demonstrate a significant improvement in circuit pe formance of our resynthesized circuits.
Sockets Direct Protocol (SDP) is an industry standard pseudo socketslike implementation to allow existing sockets applications to directly and transparently take advantage of the advanced features of current generation networks such as InfiniBand. The SDP standard supports two kinds of sockets semantics, viz., Synchronous sockets (e.g., used by Linux, BSD, Windows) and Asynchronous sockets (e.g., used by Windows, upcoming support in Linux). Due to the inherent benefits of asynchronous sockets, the SDP standard allows several intelligent approaches such as source-avail and sink-avail based zero-copy for these sockets. Unfortunately, most of these approaches are not beneficial for the synchronous sockets interface. Further, due to its portability, ease of use and support on a wider set of platforms, the synchronous sockets interface is the one used by most sockets applications today. Thus, a mechanism by which the approaches proposed for asynchronous sockets can be used for synchronous sockets is highly desirable. In this paper, we propose one such mechanism, termed as AZ-SDP (Asynchronous Zero-Copy SDP), where we memory-protect application buffers and carry out communication asynchronously while maintaining the synchronous sockets semantics. We present our detailed design in this paper and evaluate the stack with an extensive set of benchmarks. The experimental results demonstrate that our approach can provide an improvement of close to 35% for medium-message unidirectional throughput and up to a factor of 2 benefit for computationcommunication overlap tests and multi-connection benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.