This study evaluated the pH, calcium ion release and antimicrobial activity of EndoBinder (EB), containing different radiopacifiers: bismuth oxide (Bi2O3), zinc oxide (ZnO) or zirconium oxide (ZrO2), in comparison to MTA. For pH and calcium ion release tests, 5 specimens per group (n=5) were immersed into 10 mL of distilled and deionized water at 37°C. After 2, 4, 12, 24, 48 h; 7, 14 and 28 days, the pH was measured and calcium ion release quantified in an atomic absorption spectrophotometer. For antimicrobial activity, the cements were tested against S. aureus, E. coli, E. faecalis and C. albicans, in triplicate. MTA presented higher values for pH and calcium ion release than the other groups, however, with no statistically significant difference after 28 days (p>0.05); and the largest inhibition halos for all strains, with no significant difference (E. coli and E. faecalis) for pure EB and EB+Bi2O3 (p>0.05). EB presented similar performance to that of MTA as regards pH and calcium ion release; however, when ZnO and ZrO2 were used, EB did not present antimicrobial activity against some strains.
OBJETIVO: Avaliar a biocompatibilidade do cimento de fosfato de cálcio, para verificar sua eficácia como possível substituto ósseo. MÉTODOS: No presente trabalho, foi utilizado cimento de fosfato de cálcio em rádio de 8 coelhos, separados em dois grupos (GI e GII), referentes aos tempos de observação de 12 e 26 semanas pós-operatórias, a fim de se observar as reações entre este biomaterial e o tecido ósseo do animal. Foram feitas análises radiográficas e de densitometria óptica, além de microscopia óptica e eletrônica de varredura. RESULTADOS: Observou-se, ao final do experimento, que o cimento à base de fosfato de cálcio foi parcialmente reabsorvido durante o tempo de observação de 26 semanas, apresentando biocompatibilidade, com ausência de reações indesejáveis que pudessem ser atribuídas aos implantes. CONCLUSÕES: O cimento à base de fosfato de cálcio foi biocompatível e parcialmente reabsorvido no período de 26 semanas de observação. Tempos maiores de observação são necessários para a avaliação da reabsorção.
Innovative biomaterials can provide a promising new direction for the treatment of bone defects, stimulating a proper repair process, with no damage to adjacent tissues. The purpose of this in vivo study was to evaluate the biocompatibility and the osteoinductive capacity of chitosan-collagen biomembrane and scaffold containing calcium aluminate cement. Eighteen New Zealand white rabbits (Oryctolagus cuniculus) were distributed according to the experimental times of analysis (7, 15 and 30 days). Four bone defects were created in the rabbits calvaria, which were individually filled with the biomembrane, scaffold, blood clot (negative control) and autologous bone (positive control). Histopathological analysis was performed using optical microscope at 32´, 64´, 125´ and 320´ magnifications. Cell response to inflammation and new bone tissue formation was quantified using a score system. The biomembrane group presented greater inflammatory response at 15 days, with significant difference to autologous bone group (p<0.05). There was no statistically significant difference for foreign body type reaction among groups (p>0.05). Concerning new bone formation, linear closure of the defect area was observed more evidently in the group with autologous bone. The scaffold group presented similar results compared with the autologous bone group at 30 days (p>0.05). Both tested biomaterials presented similar biocompatibility compared with the control groups. In addition, the biomembrane and scaffold presented similar osteoinductive capacity, stimulating bone repair process in the course of the experimental time intervals.
The purpose of this study is to determine whether the brachycephalic obstructive airway syndrome (BOAS) is correlated to alterations in liver and spleen elasticity. Forty-eight brachycephalic and 22 mesocephalic dogs were submitted to a BOAS functional assessment, laboratory tests, abdominal ultrasound and liver and spleen Acoustic Radiation Force Impulse (ARFI) elastography. Dogs clinically affected by BOAS had higher values of liver stiffness (p < 0.001) than healthy dogs: medial lobes (1.57 ± 0.37 m/s), left and right lateral lobes (1.54 ± 0.50 m/s, 1.23 ± 0.28 m/s, respectively) and caudate lobe (1.28 ± 0.42 m/s). Compared to the mesocephalic group, the brachycephalic group (BOAS clinically affected and unaffected dogs) had higher spleen (2.51 ± 0.45 m/s; p < 0.001) and liver stiffness (p < 0.001): medial lobes (1.53 ± 0.37 m/s), left and right lateral lobes (1.47 ± 0.47 m/s, 1.20 ± 0.30 m/s, respectively) and caudate lobe (1.23 ± 0.40 m/s). Principal component analysis explained 70% of the variances composed by liver stiffness increase, erythrocytes and alanine aminotransferase reduction. Brachycephalic dogs had higher spleen and liver stiffness and a subacute inflammatory state, which represent another BOAS systemic effect. Consequently, these dogs can be at higher risk of hepatic disorders compared with mesocephalic dogs, similarly to humans affected by sleep apnea syndrome.
Ectopic ureters are rarely observed in cats. Therefore, for a better chance of success in the corrective surgical procedure and survival of the patient, diagnosis should be confirmed early. This report illustrates the occurrence of bilateral ectopic ureters in a seven month old Maine Coon cat and describes the medical and surgical management adopted for correction of the abnormality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.