Electron yield was measured from patterned carbon nanotube forests for a wide range of primary beam energies (400-20,000 eV). It was observed that secondary and backscattered electron emission behaviors in these forests are quite different than in bulk materials. This seems to be primarily because of the increased range of electrons due to the porous nature of the forests and dependent on their structural parameters, namely nanotube length, diameter and inter-nanotube spacing. In addition to providing insight into the electron microscopy of nanotubes, these results have interesting implications on designing novel secondary electron emitters based on the structural degrees of freedom of nanomaterials.
Extension-induced dispersion of multi-walled carbon nanotube in non-Newtonian fluidSecondary electron yield from individual multiwalled carbon nanotubes is investigated for a wide range of primary beam energies ͑0.5-15 keV͒. By using a simple experimental procedure under an optical microscope, we make suspended nanotubes, which are free from interaction with the substrate during electron yield measurements. It is found that the secondary electron yield from isolated suspended nanotubes is less than unity and decreases as a function of primary electron energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.