Recent developments in the technology of a modern embedded rail system grant many new possibilities for improving the railway infrastructure. An embedded rail system significantly reduces noise and the dynamical impact affecting both the infrastructure and the rolling stock itself. An embedded rail system may be used for constructing any type of railway infrastructure including high-speed railways. Its attributes are also suitable for modernization of the current steel railway bridges or constructing new structures, where slender bridge decks are required. However, in a railway track equipped with an embedded rail system, stress increments rise due to its restricted expansion movement. This effect is naturally higher when the embedded rail system is placed on a bridge, because of their different deformation possibilities. For a wider use of embedded rail system, examining the interaction behavior between the embedded rail system and the substructure is a matter of essential importance. Furthermore, the nonlinear character of embedded rail system polymer-based components needs to be considered when examining their interaction behavior. Therefore, this paper aims at investigating the nonlinear coupling functions of an embedded rail system under the effects of temperature and load rate. For this purpose, a comprehensive analysis consisting of laboratory experiments, material tests of the embedded rail system components and subsequent numerical validation was performed. Results are concluded in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.