Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds.
In this work, a highly efficient and rapid method for simultaneously removing cationic dyes from aqueous solutions was developed by using monodispersed mesoporous silica nanoparticles (MSNs) as the adsorbents. The MSNs were prepared by a facile one-pot method and characterized by scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, and Brunauer-Emmett-Teller. Experimental results demonstrated that the as-prepared MSNs possessed a large specific surface area (about 585 m2/g), uniform particle size (about 30 nm), large pore volume (1.175 cm3/g), and narrow pore size distribution (1.68 nm). The materials showed highly efficient and rapid adsorption properties for cationic dyes including rhodamine B, methylene blue, methyl violet, malachite green, and basic fuchsin. Under the optimized conditions, the maximum adsorption capacities for the above mentioned cationic dyes were in the range of 14.70 mg/g to 34.23 mg/g, which could be achieved within 2 to 6 min. The probable adsorption mechanism of MSNs for adsorption of cationic dyes is proposed. It could be considered that the adsorption is mainly controlled by electrostatic interactions and hydrogen bonding between the cationic dyes and MSNs. As a low-cost, biocompatible, and environmentally friendly material, MSNs have a potential application in wastewater treatment for removing some environmental cationic contaminants.
Mesoporous graphitic carbon nitride (MCN)@NiCo2O4 was prepared and used as an SPME coating for high efficiency extraction of trace environmental pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.