Although the construction of superwettability materials for oil/water separation has been developed rapidly, the postprocess of the used separation materials themselves is still a thorny problem due to their nondegradation in the natural environment. In this work, we reported the functionalization of polylactic acid (PLA) nonwoven fabric as superoleophilic and superhydrophobic material for efficient treatment of oily wastewater with eco-friendly post-treatment due to the well-known biodegradable nature of PLA matrix.
In chain-growth polymerization, a chain grows continually to reach thousands of subunits. However, the real-time dynamics of chain growth remains unknown. Using magnetic tweezers, we visualized real-time polymer growth at the single-polymer level. Focusing on ring-opening metathesis polymerization, we found that the extension of a growing polymer under a pulling force does not increase continuously but exhibits wait-and-jump steps. These steps are attributable to the formation and unraveling of conformational entanglements from newly incorporated monomers, whose key features can be recapitulated with molecular dynamics simulations. The configurations of these entanglements appear to play a key role in determining the polymerization rates and the dispersion among individual polymers.
We report resistive switching behavior in a Ag/[BiFeO3/γ-Fe2O3]/FTO device, which can be controlled simultaneously by voltage pulses, magnetic-field and white-light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.