Covalent attachment of a synthetic triantennary N-acetylagalactosamine (GalNAc) ligand to chemically modified siRNA has enabled asialoglycoprotein (ASGPR)-mediated targeted delivery of therapeutically active siRNAs to hepatocytes in vivo. This approach has become transformative for the delivery of RNAi therapeutics as well as other classes of investigational oligonucleotide therapeutics to the liver. For efficient functional delivery of intact drug into the desired subcellular compartment, however, it is critical that the nucleic acids are stabilized against nucleolytic degradation. Here, we compared two siRNAs of the same sequence but with different modification pattern resulting in different degrees of protection against nuclease activity. In vitro stability studies in different biological matrices show that 5′-exonuclease is the most prevalent nuclease activity in endo-lysosomal compartments and that additional stabilization in the 5′-regions of both siRNA strands significantly enhances the overall metabolic stability of GalNAc–siRNA conjugates. In good agreement with in vitro findings, the enhanced stability translated into substantially improved liver exposure, gene silencing efficacy and duration of effect in mice. Follow-up studies with a second set of conjugates targeting a different transcript confirmed the previous results, provided additional insights into kinetics of RISC loading and demonstrated excellent translation to non-human primates.
Asialoglycoprotein receptor (ASGPR) mediated delivery of triantennary N-acetylgalactosamine (GalNAc) conjugated short interfering RNAs (siRNAs) to hepatocytes is a promising paradigm for RNAi therapeutics. Robust and durable gene silencing upon subcutaneous administration at therapeutically acceptable dose levels resulted in the advancement of GalNAc-conjugated oligonucleotide-based drugs into preclinical and clinical developments. To systematically evaluate the effect of display and positioning of the GalNAc moiety within the siRNA duplex on ASGPR binding and RNAi activity, nucleotides carrying monovalent GalNAc were designed. Evaluation of clustered and dispersed incorporation of GalNAc units to the sense (S) strand indicated that sugar proximity is critical for ASGPR recognition, and location of the clustered ligand impacts the intrinsic potency of the siRNA. An array of nucleosidic GalNAc monomers resembling a trivalent ligand at or near the 3' end of the S strand retained in vitro and in vivo siRNA activity, similar to the parent conjugate design. This work demonstrates the utility of simple, nucleotide-based, cost-effective siRNA-GalNAc conjugation strategies.
Trehalose is an important disaccharide that is used as a cellular protectant by many different organisms, helping these organisms better survive extreme conditions, such as dehydration, oxidative stress, and freezing temperatures. Methods to detect and accurately measure trehalose from different organisms will help us gain a better understanding of the mechanisms behind trehalose's ability to act as a cellular protectant. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay using selected reaction monitoring mode for the detection and quantification of trehalose using maltose as an internal standard has been developed. This assay uses a commercially available LC column for trehalose separation and a standard triple quadrupole mass spectrometer, thus allowing many scientists to take advantage of this simple assay. The calibration curve from 3 to 100μM trehalose was fit best by a single polynomial. This LC-MS/MS assay directly detects and accurately quantifies trehalose, with an instrument limit of detection (LOD) that is 2-1000 times more sensitive than the most commonly-used assays for trehalose detection and quantification. Furthermore, this assay was used to detect and quantify endogenous trehalose produced by Escherichia coli (E. coli) cells, which were found to have an intracellular concentration of 8.5±0.9mM trehalose. This method thus shows promise for the reliable detection and quantification of trehalose from different biological sources.
Zur analytischen Priifung merden Methyl-und Athyl-pyridinmonocarbonduren durch direkte Sulfonierung von Pyridinbasen und durch Aufbau des Pyridinringes dargestellt : 2-, 4-, 5-, O-Methyl-nicotinsiiure, 2-, 4-, 5-, 6-Athylnicotinsaure und 5-Athyl-picolinsiiure.Neben den unsubstituierten Pyridinmonocarbonsaureri Picolinsaure, Nicotinsaure und Isonicotinsaure interessieren in der analytischen Chemie in zunehmendemMaBe methyl-und Bthylsubstituierte Pyridinmoiiocarbonsaureii.So erh< man Methyl-und Bthyl-pyridinmonocarbonsauren als Abbauprodukte bei der Konstitutionsermittlung alkylierter oder kondensierter Heterocyclen. Weiterhin treten bei Substitutionen am Pyridinring Isomere auf, deren weitere Umsetzung neben den gewunschten Verbindungen auch solche mit anderer pharniakologischer Wirkung liefert. Als Zwischenprodukte bei Synthesen in der Pyridinreihe konnen Alkyl-pyridinmonocarbon-siPuren entstehen. SchlieOlich bereitet es noch grol3e Schwierigkeiten, au8 Teer stammende Pyridinbasengemische sowohl praparativ als auch analytisch in die einzelnen Bestandteile zu trennen. Neben der Weiterentmicklung der gaschromatographischen Bestimmung von Pyridinbasen ist es daher wichtig, weitere Methoden fur die Uberpriifung von Trenneffekten bei der fraktionierten Destillation von Pyridinbasen auszuarbeiten.Es erschien notwendig, eiiie einfache Methode zur Trennung und Identifizierung der Methyl-und Athyl-pyridinmonocarbonsauren zu entwickeln. Dazu war es erforderlich, samtliche isomeren Verbindungen darzustellen.
Die Leuna-Werke ,,Walter Ulbricht" beschaftigen sich mit der Herstellung von Pyridincarbonsauren, ihren Derivaten und Folgeprodukten. Da die Alkylpyridincarbonsauren wichtige Ausgangsstoffe zur Darstellung von Pharmaceuticis sind und bei der Synthese dieser Verbindungen unter Umstanden Isomere mit unterschiedlicher pharmakologischer Wirkung erhalten werden, war es von Interesse, geeignete analytische Methoden zum Nachweis dieser Substanzen aufzufinden. Voraussetzung fur die Ausarbeitung solcher Methoden war die Darstellung aller in Frage kommenden Isomere. In dieser Mitteilung sol1 zuniichst uber die Darstellung einiger methyl-und athylsubstituierter Pyridincarbonsauren berichtet werden. Auf die Darstellung weiterer Verbindungen und den papierchromatographischen Nachweis werden wir in einer spgteren Mitteilung eingehen.Fur die Darstellung der hier genannten alkylsubstituierten Pyridincarbonsauren verwendeten wir folgende drei Verfahren: die Kaliumpermanganatoxydation von Pyridinbasen, die Umsetzung von Alkyl-pyridin-1-oxiden rnit Dimethylsulfat und Natriumcyanid, und schlieBlich die Kernsubstitution von Alkylpyridin-1-oxiden mit Sulfurylchlorid. Kaliumpermanganatoxydation von PyridinbasenNach Efimowsky und Rumpf laat sich 2,4-Lutidin mit 1,5proz. Kaliumpermanganatlosung zu 2-Methyl-pyridin-carbonsaure-(4), 4-Methyl-pyridincarbonsaure-(2) und einer geringen Menge Pyridindicarbonsaure-(2,4) oxydieren. Die Trennung dieser drei Verbindungen gelang uns uber die Xthylester. Ebenfalls glatt verlief die Oxydation von 2,5-Lutidin nach Jachontow2) zu 6-Methyl-pyridincarbonsaure-(3), wobei gleichzeitig Pyridindicarbonsaure-(2,5) erhalten wurde. Die gemunschte Oxydation nur einer Methylgruppe wurde hier durch Zugabe des Oxydationsmittels in kleinen Anteilen, jeweils nach vorangegangener Entfarbung, erreicht. Eine Trennung der beiden entstandenen Verbindungen gelang durch Destillat ion der Methylester. SchlieBlich konnte 6-Methyl-pyridincarbonsaure-(2) nach Ladenburg 0. Efimvaky und P. Rumpf, Bull. SOC. chim. France 21, 648 (1954).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.