When confronted with an adaptive challenge, such as extreme temperature, closely related species frequently evolve similar phenotypes using the same genes. Although such repeated evolution is thought to be less likely in highly polygenic traits and distantly related species, this has not been tested at the genome scale. We performed a population genomic study of convergent local adaptation among two distantly related species, lodgepole pine and interior spruce. We identified a suite of 47 genes, enriched for duplicated genes, with variants associated with spatial variation in temperature or cold hardiness in both species, providing evidence of convergent local adaptation despite 140 million years of separate evolution. These results show that adaptation to climate can be genetically constrained, with certain key genes playing nonredundant roles.
Sequence capture is a flexible tool for generating reduced representation libraries, particularly in species with massive genomes. We used an exome capture approach to sequence the gene space of two of the dominant species in Canadian boreal and montane forests - interior spruce (Picea glauca x engelmanii) and lodgepole pine (Pinus contorta). Transcriptome data generated with RNA-seq were coupled with draft genome sequences to design baits corresponding to 26 824 genes from pine and 28 649 genes from spruce. A total of 579 samples for spruce and 631 samples for pine were included, as well as two pine congeners and six spruce congeners. More than 50% of targeted regions were sequenced at >10× depth in each species, while ~12% captured near-target regions within 500 bp of a bait position were sequenced to a depth >10×. Much of our read data arose from off-target regions, which was likely due to the fragmented and incomplete nature of the draft genome assemblies. Capture in general was successful for the related species, suggesting that baits designed for a single species are likely to successfully capture sequences from congeners. From these data, we called approximately 10 million SNPs and INDELs in each species from coding regions, introns, untranslated and flanking regions, as well as from the intergenic space. Our study demonstrates the utility of sequence capture for resequencing in complex conifer genomes, suggests guidelines for improving capture efficiency and provides a rich resource of genetic variants for studies of selection and local adaptation in these species.
We investigated adaptation to climate in populations of two widespread tree species across a range of contrasting environments in western Canada. In a series of common garden experiments, bud phenology, cold hardiness, and seedling growth traits were assessed for 254 populations in the interior spruce complex (Picea glauca, P. engelmannii, and their hybrids) and for 281 populations of lodgepole pine (Pinus contorta). Complex multitrait adaptations to different ecological regions such as boreal, montane, coastal, and arid environments accounted for 15–20% of the total variance. This population differentiation could be directly linked to climate variables through multivariate regression tree analysis. Our results suggest that adaptation to climate does not always correspond linearly to temperature gradients. For example, opposite trait values (e.g., early versus late budbreak) may be found in response to apparently similar cold environments (e.g., boreal and montane). Climate change adaptation strategies may therefore not always be possible through a simple shift of seed sources along environmental gradients. For the two species in this study, we identified a relatively small number of uniquely adapted populations (11 for interior spruce and nine for lodgepole pine) that may be used to manage adaptive variation under current and expected future climates.
We present a comprehensive approach to carry out community-wide assessments of in situ conservation of forest trees based on basic botanical and ecological data. This is a first step, resulting in a consistent framework to set priorities for collection and inclusion of species- specific biological and genetic information. We use botanical sample data to generate high-resolution distribution maps as a basis for a gap analysis of how well each species is represented in protected areas. To account for adaptive genetic variation of tree species we stratify populations by ecological zones that represent different macroclimates. In a detailed example for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), we show that under certain conditions this approach can pinpoint gaps at the level of genetically differentiated populations without actually using genetic data. In a comprehensive case study, evaluating the outcome of a major protected area expansion between 1991 and 2001 for British Columbia, we demonstrate how extensive results from a community-wide GIS analysis can be summarized and presented for decision-making. We provide methods to identify and efficiently cope with in situ conservation gaps, where lack of data or low protected area coverage requires additional conservation efforts or collection of better data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.