The 2022 World Cup creates great opportunities for the country of Qatar, but also poses significant challenges. In this study the main challenge of maintaining thermal comfort conditions within the football arenas is presented, with respect to the heat stress index (HSI) and the aero-thermal comfort thresholds established for opened stadiums. Potential cooling strategies for delivering tolerant comfort levels are introduced, followed by their functional strengths and limitations for the hot-humid climate of Qatar. An estimation of the cooling load for semi-outdoor stadiums in Qatar is also presented. The results, produced by dynamic thermal modelling, indicated that a load of 115 MW h per game should be at least consumed in order to provide both indoor and outdoor thermal comfort conditions. Finally, the use of solar energy technologies for the generation of electricity and cooling are evaluated, based on their viability beyond the 2022 World Cup event, towards the nation's targets for sustainability and lasting legacy. Highlights:• Provision of aero-thermal comfort conditions within the sport facilities.• Higher efficiency of solar sorption systems in hot-humid climates.• An estimated cooling load of about 115 MW h per game is required.• Balancing techniques to meet carbon neutrality commitment.• Forthcoming local and national community benefits.
Mechanical Heating Ventilation and Air-Conditioning (HVAC) systems account for 60% of the total energy consumption of buildings. As a sector, buildings contributes about 40% of the total global energy demand. By using passive technology coupled with natural ventilation from wind towers, significant amounts of energy can be saved, reducing the emissions of greenhouse gases. In this study, the development of Computational Fluid Dynamics (CFD) analysis in aiding the development of wind towers was explored. Initial concepts of simple wind tower mechanics to detailed design of wind towers which integrate modifications specifically to improve the efficiency of wind towers were detailed. From this, using CFD analysis, heat transfer devices were integrated into a wind tower to provide cooling for incoming air, thus negating the reliance on mechanical HVAC systems. A commercial CFD code Fluent was used in this study to simulate the airflow inside the wind tower model with the heat transfer devices. Scaled wind tunnel testing was used to validate the computational model. The airflow supply velocity was measured and compared with the numerical results and good correlation was observed. Additionally, the spacing between the heat transfer devices was varied to optimise the performance. The technology presented here is subject to a patent application (PCT/GB2014/052263).
ReuseUnless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website. TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. runs, proving the accuracy of the methodology followed, which is applicable to numerous 19 environmental design problems. 20
Abstract. The complexity of the built environment requires the adoption of coupled techniques to predict the flow phenomena and provide optimum design solutions. In this study, coupled computational fluid dynamics (CFD) and response surface methodology (RSM) optimisation tools are employed to investigate the parameters that determine the wind comfort in a two-dimensional stadium model, by optimising the roof geometry. The roof height, width and length are evaluated against the flow homogeneity at the spectator terraces and the playing field area, the roof flow rate and the average interior pressure. Based on non-parametric regression analysis, both symmetric and asymmetric configurations are considered for optimisation. The optimum design solutions revealed that it is achievable to provide an improved wind environment in both playing field area and spectator terraces, giving a further insight on the interrelations of the parameters involved. Considering the limitations of conducting a twodimensional study, the obtained results may beneficially be used as a basis for the optimisation of a complex threedimensional stadium structure and thus become an important design guide for stadium structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.