Earthquakes of high magnitude often result in large casualties and huge economic losses in Indonesia. An earthquake risk assessment must be carried out. The risk assessment process requires a structured approach. This paper is containing of the first step of risk assessment using actuarial-statistical method. The data used as research variables in this paper are the number of earthquakes and the losses due to earthquakes. The earthquakes data used are earthquakes with magnitude > 5 Richter Scale. Data is collected within the last 40 years, from 1980 to 2019. Data is collected from Indonesian Disaster Data and Information, and NOAA National Centers for Environmental Information (NCEI). Descriptive statistics analysis obtains that the most frequently earthquakes with magnitude > 5 Richter Scale occurred in Indonesia in 2004, where as it is known that at the end of 2004 an earthquake with a magnitude of 9.1 Richter Scale occurred in Aceh which caused the highest loss, which was around 147485.500 billion rupiah. Normality test of the variables results that the number of earthquakes and the losses due to earthquakes are not normally distributed. Kolmogorov-Smirnov Goodness-of-Fit test results that the number of earthquakes follows Gamma Distribution with shape parameter α = 1.800 and scale parameter β = 2.236; while the losses due to earthquakes follows Power Function Distribution with shape parameter α = 0.072, and boundary parameter a = 0, b = 2.810 x 105.
Recently binary logistic regression has been used to identify four factors or predictor variables that supposedly influence the response variable, which is testing result of Salmonella sp bacterial contamination on vannamei shrimp. Binary logistic regression analysis results that there are two predictor variables which is significantly affect the testing result of Salmonella sp bacterial contamination on vannamei shrimp, those are the testing result of Salmonella sp bacterial contamination on farmers hand swab and the subdistrict of vannamei shrimp ponds. Those significant predictor variables selected have been modelled in binary logit model. This paper proposes to study the statistical associations between the two significant predictor variables and the contamination of Salmonella sp bacterial on vannamei shrimp and to build a numerical simulation of two significant predictor variables parameters using bayesian network inference. Directed Acyclic Graph (DAG) is applied for modelling binary logit model of significant factors in bayesian network inference.
Proses produksi dan pemasaran selama ini sangat tidak efisien dan efektif terutama untuk Usaha Kecil Menengah (UKM) yang berproses menjadi home industry. Contohnya UKM yang diusung oleh Wanita Pesisir di daerah Cumpat, Kedung Cowek, Bulak dan Kenjeran Surabaya yang memproduksi rengginang dengan berbagai macam rasa dari olahan hasil laut seperti udang dan lorjuk, yang masih memakai alat seadanya sehingga proses penggorengan rengginang tidak dapat maksimal dan pemasaran belum efisien, padahal merupakan unggulan Kenjeran sebagai daerah pesisir utara. Tim pengabdian mengidentifikasi permasalahan tersebut agar dapat meningkatkan perekonomian. Metode yang digunakan yaitu: studi pustaka, observasi, pendampingan, pelatihan, monitoring dan evaluasi di lapangan pada mitra produksi diversifikasi rengginang berbagai macam rasa dari olahan hasil laut. Alat Spinner peniris minyak berteknologi digunakan dalam proses penirisan minyak agar produk tetap higienis dan berkualitas. Pelatihan kreatifitas dan berinovasi dalam pembuatan produk rengginang aneka rasa serta pemasaran secara e-marketing juga diberikan kepada mitra UKM. Inovasi dan kreatifitas perlu ditingkatkan untuk mengantisipasi kejenuhan konsumen, sehingga dilakukan kegiatan pemasaran melalui e-commerce agar produk lebih dikenal di Jawa Timur maupun luar pulau. Dengan adanya program pengabdian ini, mitra berkontribusi dengan aktif dalam mengikuti pelatihan dan pendampingan serta kegiatan tersebut dilakukan sesuai dengan prokes pada masa Pemberlakukan Pembatasan Kegiatan Masyarakat (PPKM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.