A closed-loop controlling system for Micro Electro Mechanical System (MEMS) gyroscope sense mode is investigated in this paper, and the controller is designed to achieve low error, wide bandwidth and low noise capability. The gyroscope monitoring system includes four independent closed-loop, and is simulated by Simulink soft to prove the speedability and stability of the sensing closed-loop. The gyroscope monitoring system is realized through 3 analog circuit boards, and is tested through temperature controlled turntable. The bias stability, angular random walking value and bias temperature coefficients improved from 2.168 • /h, 0.155 • / √ h and 10.59 • /h/ • C to 0.415 • /h, 0.0414 • / √ h and 3.59 • /h/ • C. And the bandwidth value is improved from 13Hz to 104Hz. Meanwhile, scale factor nonlinearity, asymmetry, repeatability and temperature coefficient parameters are enhanced from 660 ppm, 430ppm, 403ppm and 180 ppm/ • C to 59.3ppm, 62.4ppm, 50.4ppm and 28.7 ppm/ • C respectively. INDEX TERMS Micro Electro Mechanical System (MEMS) gyroscope, sensing closed-loop, experiment, quadrature error, step response.
To eliminate the noise and temperature drift in an Micro-Electro-Mechanical Systems (MEMS) gyroscope’s output signal for improving measurement accuracy, a parallel processing model based on Multi-objective particle swarm optimization based on variational modal decomposition-time-frequency peak filter (MOVMD–TFPF) and Beetle antennae search algorithm- Elman neural network (BAS–Elman NN) is established. Firstly, variational mode decomposition (VMD) is optimized by multi-objective particle swarm optimization (MOPSO); then, the best decomposition parameters [kbest,abest] can be obtained. Secondly, the gyroscope output signals are decomposed by VMD optimized by MOPSO (MOVMD); then, the intrinsic mode functions (IMFs) obtained after decomposition are classified into a noise segment, mixed segment, and drift segment by sample entropy (SE). According to the idea of a parallel model, the noise segment can be discarded directly, the mixed segment is denoised by time-frequency peak filtering (TFPF), and the drift segment is compensated at the same time. In the compensation part, the beetle antennae search algorithm (BAS) is adopted to optimize the network parameters of the Elman neural network (Elman NN). Subsequently, the double-input/single-output temperature compensation model based on the BAS-Elman NN is established to compensate the drift segment, and these processed segments are reconstructed to form the final gyroscope output signal. Experimental results demonstrate the superiority of this parallel processing model; the angle random walk of the compensated gyroscope output is decreased from 0.531076 to 5.22502 × 10−3°/h/√Hz, and its bias stability is decreased from 32.7364°/h to 0.140403°/h, respectively.
This paper presents a new type of three-axis gyroscope. The gyroscope comprises two independent parts, which are nested to further reduce the structure volume. The capacitive drive was adopted. The motion equation, capacitance design, and spring design of a three-axis gyroscope were introduced, and the corresponding formulas were derived. Furthermore, the X/Y driving frequency of the gyroscope was 5954.8 Hz, the Y-axis detection frequency was 5774.5 Hz, and the X-axis detection frequency was 6030.5 Hz, as determined by the finite element simulation method. The Z-axis driving frequency was 10,728 Hz, and the Z-axis sensing frequency was 10,725 Hz. The MEMS gyroscope’s Z-axis driving mode and the sensing mode’s frequency were slightly mismatched, so the gyroscope demonstrated a larger bandwidth and higher Z-axis mechanical sensitivity. In addition, the structure also has good Z-axis impact resistance. The transient impact simulation of the gyroscope structure showed that the maximum stress of the sensitive structure under the impact of 10,000 g@5 ms was 300.18 Mpa. The gyroscope was produced by etching silicon wafers in DRIE mode to obtain a high aspect ratio structure, tightly connected to the glass substrate by silicon/glass anode bonding technology.
This paper studies a kind of gyro structure of N = 3 Wineglass Mode Metal Cylindrical Resonator Gyroscope (WMMCRG). Compared with traditional Cylindrical Vibrating Gyroscope (CVG), the designed structure has higher scale factor and lower frequency split. This paper provides a more specific processing method and the parameters of resonator materials. A closed-loop controlling system with low error and low noise is designed for WMMCRG. The system is composed of three independent closed-loop systems: drive closed-loop, sensing closed-loop, and quadrature error correction closed-loop. Through the test of the high-precision turntable, under the premise of the same material and processing technology, the bias instability, bias stability, zero bias, Angular Random Walk (ARW), and frequency split of WMMCRG is 1.974°/h, 10.869°/h, 10.3323°/s, 16 (°)/√h, 0.02 Hz, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.