Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria – via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces – results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to biochemical responses in membrane dynamics may explain how organelles orderly cohabit in the crowded cytoplasm.
The tumor biomarkers CD147 and MVD-CD34 are more feasible markers for rational selection of LT candidates with HCC. MMP-9 and MMP-2 expression in stromal compartment, combined with pTNM tumor grade, may be helpful in predicting poor prognosis in HCC patients after LT.
Currently, the specific capacity and cycling performance of various MoS /carbon-based anode materials for Na-ion storage are far from satisfactory due to the insufficient structural stability of the electrode, incomplete protection of MoS by carbon, difficult access of electrolyte to the electrode interior, as well as inactivity of the adopted carbon matrix. To address these issues, this work presents the rational design and synthesis of 3D interconnected and hollow nanocables composed of multiwalled carbon@MoS @carbon. In this architecture, (i) the 3D nanoweb-like structure brings about excellent mechanical property of the electrode, (ii) the ultrathin MoS nanosheets are sandwiched between and doubly protected by two layers of porous carbon, (iii) the hollow structure of the primary nanofibers facilitates the access of electrolyte to the electrode interior, (iv) the porous and nitrogen-doping properties of the two carbon materials lead to synergistic Na-storage of carbon and MoS . As a result, this hybrid material as the anode material of Na-ion battery exhibits fast charge-transfer reaction, high utilization efficiency, and ultrastability. Outstanding reversible capacity (1045 mAh g ), excellent rate behavior (817 mAh g at 7000 mA g ), and good cycling performance (747 mAh g after 200 cycles at 700 mA g ) are obtained.
The intracellular environment of eukaryotic cells is highly complex and compact. The limited volume of the cell, usually a few hundred femtoliters, is not only occupied by numerous complicated, diverse membranous and proteinaceous structures, these structures are also highly dynamic due to constant remodeling and trafficking events. Consequently, intracellular interactions are more than just opportunities to exchange molecules; they also involve components physically navigating around each other in a highly confined space. While the biochemical interactions between organelles have been intensely studied in the past decades, the mechanical properties of organelles and the physical interactions between them are only beginning to be unraveled. Indeed, recent studies show that intracellular organelles are, at times, under extreme mechanical strain both in widely used experimental systems as well as in vivo. In this Hypothesis, we highlight known examples of intracellular mechanical challenges in biological systems and focus on the coping mechanisms of two important organelles, the nucleus and mitochondria, for they are the best studied in this aspect. In the case of mitochondria, we propose that ER-mitochondrial contact sites at thin cell peripheries may induce mitochondrial fission by mechanically constricting mitochondrial tubules. We also briefly discuss the mechano-responsiveness of other organelles and interesting directions for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.