Purpose To identify cerebral radiomic features related to diagnosis and subtyping of attention deficit hyperactivity disorder (ADHD) and to build and evaluate classification models for ADHD diagnosis and subtyping on the basis of the identified features. Materials and Methods A consecutive cohort of 83 age- and sex-matched children with newly diagnosed and never-treated ADHD (mean age 10.83 years ± 2.30; range, 7-14 years; 71 boys, 40 with ADHD-inattentive [ADHD-I] and 43 with ADHD-combined [ADHD-C, or inattentive and hyperactive]) and 87 healthy control subjects (mean age, 11.21 years ± 2.51; range, 7-15 years; 72 boys) underwent anatomic and diffusion-tensor magnetic resonance (MR) imaging. Features representing the shape properties of gray matter and diffusion properties of white matter were extracted for each participant. The initial feature set was input into an all-relevant feature selection procedure within cross-validation loops to identify features with significant discriminative power for diagnosis and subtyping. Random forest classifiers were constructed and evaluated on the basis of identified features. Results No overall difference was found between children with ADHD and control subjects in total brain volume (1069830.00 mm ± 90743.36 vs 1079 213.00 mm ± 92742.25, respectively; P = .51) or total gray and white matter volume (611978.10 mm ± 51622.81 vs 616960.20 mm ± 51872.93, respectively; P = .53; 413532.00 mm ± 41 114.33 vs 418173.60 mm ± 42395.48, respectively; P = .47). The mean classification accuracy achieved with classifiers to discriminate patients with ADHD from control subjects was 73.7%. Alteration in cortical shape in the left temporal lobe, bilateral cuneus, and regions around the left central sulcus contributed significantly to group discrimination. The mean classification accuracy with classifiers to discriminate ADHD-I from ADHD-C was 80.1%, with significant discriminating features located in the default mode network and insular cortex. Conclusion The results of this study provide preliminary evidence that cerebral morphometric alterations can allow discrimination between patients with ADHD and control subjects and also between the most common ADHD subtypes. By identifying features relevant for diagnosis and subtyping, these findings may advance the understanding of neurodevelopmental alterations related to ADHD. RSNA, 2017 Online supplemental material is available for this article.
Purpose: The purpose of this study is to develop and validate a nomogram model combing radiomics features and clinical characteristics to preoperatively differentiate grade 1 and grade 2/3 tumors in patients with pancreatic neuroendocrine tumors (pNET). Experimental Design: A total of 137 patients who underwent contrast-enhanced CT from two hospitals were included in this study. The patients from the second hospital (n ¼ 51) were selected as an independent validation set. The arterial phase in contrast-enhanced CT was selected for radiomics feature extraction. The Mann-Whitney U test and least absolute shrinkage and selection operator regression were applied for feature selection and radiomics signature construction. A combined nomogram model was developed by incorporating the radiomics signature with clinical factors. The association between the nomogram model and the Ki-67 index and rate of nuclear mitosis were also investigated respectively. The utility of the proposed model was evaluated using the ROC, area under ROC curve (AUC), calibration curve, and decision curve analysis (DCA). The Kaplan-Meier (KM) analysis was used for survival analysis. Results: An eight-feature-combined radiomics signature was constructed as a tumor grade predictor. The nomogram model combining the radiomics signature with clinical stage showed the best performance (training set: AUC ¼ 0.907; validation set: AUC ¼ 0.891). The calibration curve and DCA demonstrated the clinical usefulness of the proposed nomogram. A significant correlation was observed between the developed nomogram and Ki-67 index and rate of nuclear mitosis, respectively. The KM analysis showed a significant difference between the survival of predicted grade 1 and grade 2/3 groups (P ¼ 0.002). Conclusions: The combined nomogram model developed could be useful in differentiating grade 1 and grade 2/3 tumor in patients with pNETs.
China’s population has rapidly aged over the recent decades of social and economic development as neurodegenerative disorders have proliferated, especially Alzheimer’s disease (AD) and related dementias (ADRD). AD’s incidence rate, morbidity, and mortality have steadily increased to make it presently the fifth leading cause of death among urban and rural residents in China and magnify the resulting financial burdens on individuals, families and society. The ‘Healthy China Action’ plan of 2019–2030 promotes the transition from disease treatment to health maintenance for this expanding population with ADRD. This report describes related epidemiological trends, evaluates the economic burden of the disease, outlines current clinical diagnosis and treatment status and delineates existing available public health resources. More specifically, it examines the public health impact of ADRD, including prevalence, mortality, costs, usage of care, and the overall effect on caregivers and society. In addition, this special report presents technical guidance and supports for the prevention and treatment of AD, provides expertise to guide relevant governmental healthcare policy development and suggests an information platform for international exchange and cooperation.
Introduction: The emerging field of “radiomics” has considerable potential in disease diagnosis, pathologic grading, prognosis evaluation, and prediction of treatment response. We aimed to develop a novel radiomics nomogram based on radiomics features and clinical characteristics that could preoperatively predict early recurrence (ER) of intrahepatic cholangiocarcinoma (ICC) after partial hepatectomy.Methods: A predictive model was developed from a training cohort comprising 139 ICC patients diagnosed between January 2010 and June 2014. Radiomics features were extracted from arterial-phase image of contrast-enhanced magnetic resonance imaging. Feature selection and construction of a “radiomics signature” were through Spearman's rank correlation and least absolute shrinkage and selection operator (LASSO) logistic regression. Combined with clinical characteristics, a radiomics nomogram was developed with multivariable logistic regression. Performance of the nomogram was evaluated with regard to discrimination, calibration, and clinical utility. An independent validation cohort involving 70 patients recruited from July 2014 to March 2016 was used to evaluate the utility of the nomogram developed.Results: The radiomics signature, consisting of nine features, differed significantly between ER patients and non-ER patients in training and validation cohorts. The area under the curve (AUC) of the radiomics signature in training and validation cohorts was 0.82 (confidence interval [CI], 0.74–0.88) and 0.77 (95% CI, 0.65–0.86), respectively. The AUC of the radiomics nomogram combining the radiomics signature and clinical stage in the two cohorts was 0.90 (95%CI, 0.83–0.94) and 0.86 (95% CI, 0.76–0.93), respectively. Decision curve analysis confirmed the clinical usefulness of the radiomics nomogram.Conclusion: The non-invasive radiomics nomogram developed using the radiomics signature and clinical stage could be used to predict ER of ICC after partial hepatectomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.