Nanogap electrodes are realized using pre-patterned electrodes and a swelling controlled cracking method. Parallel fabrication of nanogap electrodes on flexible substrates can be achieved using this method. This swelling-controlled cracking method is promising for fabricating high-performance flexible electronics. UV photodetectors with ZnO nanoparticle-bridged nanogap electrodes exhibit high responsivity and external quantum efficiency.
The branched hierarchical heteronanowires have been widely studied for optoelectronics application because of their unique electronic and photonic performances. Here, we successfully synthesized Ag nanowire-ZnO-branched nanorod heteronanowires based on an improved hydrothermal method. Then we fabricated single heteronanowire across a Au electrode pair with different gap widths and parallel-aligned heteronanowires on a Au interdigitated electrode with a dielectrophoresis method, indicating the flexibility and operability of the dielectrophoresis assembly method. Increased photocurrent and shortened response time could be obtained by air-annealing and Ar-plasma post-treatments. A large responsivity of 2.5 A W and a linear dynamic range of 74 dB could be obtained, indicating stable responsivity for both weak and strong illumination. The excellent photoresponse performance is attributed to the structure superiority of heteronanowires. The proposed strategy of dielectrophoresis-assembled heteronanowires provides a new opportunity to design and fabricate hierarchical nanostructure photodetectors.
The fabrication of air-gap structures for electrical interconnections has been demonstrated using a sacrificial polymer encapsulated in conventional dielectric materials. The air-gap is formed by thermally decomposing the sacrificial polymer and allowing the byproducts to diffuse through the encapsulating dielectric. The diffusivity of the polymer decomposition products is adequate at elevated temperatures to allow the formation of an air-gap. The decomposition of a 5 µm thick polymer film results in less than 100 Å of residue. Electromagnetic simulation shows that the effective dielectric constant of silicon dioxide (ε = 4.2) can be lowered to 2.4-2.8 for relevant structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.