Context: Temporal lobe epilepsy (TLE) is resistant to antiepileptic drugs (AEDs) and is associated with cognitive impairment. The modern Chinese medicine, compound Danshen dripping pills (CDDP), is clinically effective in treating epilepsy and improving cognitive impairment.
Objective: This study evaluated the protective effects of CDDP alone and in combination with carbamazepine (CBZ) on kainic acid-induced TLE and cognitive impairment in rats.
Materials and methods: Sprague–Dawley rats were randomly divided into five groups: control (sham operated), model, CDDP, CBZ and combined. A TLE model was then created via bilateral intrahippocampal injection of 0.35 μg kainic acid (KA). Rats received CDDP (85 mg/kg), CBZ (100 mg/kg) or combined (85 mg/kg CDDP +100 mg/kg CBZ) via intragastric administration for 90 d, respectively. Seizure intensity, apoptosis and glial cell line-derived neurotrophic factor (GDNF) were measured. Furthermore, the improvement in cognitive impairment and hippocampal neuronal damage was evaluated.
Results: CDDP combined with CBZ significantly decreased seizure severity and frequency (p < 0.05) and ameliorated cognitive impairment (p < 0.05). The model group showed a significant reduction of neurons and Bcl-2/Bax expression in the hippocampus CA3 area (p < 0.01), the combined groups significantly reversed these change (p < 0.01). GDNF expression in the combined groups showed a clear increase over the model group (p < 0.05).
Conclusion: These findings support the use of CDDP as an adjuvant drug for the treatment of TLE and cognitive deficit. Its mechanism might be related to an anti-apoptosis effect and up-regulation of GDNF.
Background
Vascular cognitive dysfunction in patients with vascular dementia (VD) is a kind of severe cognitive dysfunction syndrome caused by cerebrovascular diseases. At present, effective drugs to improve the cognitive function of VD patients still need to be explored. Transient Receptor Potential Melastatin 2 (TRPM2) channel is a nonspecific cation channel that plays a key role in the toxic death of neurons. Perillaldehyde (PAE) has the protective effect of epilepsy and insomnia and other central nervous system diseases. The aim of this study is to explore whether PAE improves cognitive function in VD rats and to investigate the potential mechanisms in vivo and vitro.
Methods
VD rats were induced by bilateral common carotid arteries occlusion (2-vessel occlusion [2VO]) and treated with PAE for 4 weeks. The neuroprotective effects of PAE was subsequently assessed by the Morris water maze, hematoxylin–eosin (HE) staining, Golgi staining, electron microscopy, Neuron-specific nuclear protein (Neu N) staining, and TdT-mediated dUTP nick end labeling (TUNEL) staining. After primary hippocampal neurons were isolated, cell viability was detected by MTT assay and intracellular Ca2+ concentration was detected by calcium imaging assay. The content of Nitriteoxide (NO), Malondialdehyde (MDA) and Superoxide dismutase (SOD) activity in serum of rats were observed by Enzyme Linked Immunosorbent Assay (ELISA). Immunohistochemistry, Western blot, and Confocal laser scanning were used to detect the expression levels of N-methyl-d-asprtate receptor-2B (NR2B) and TRPM2.
Results
The results showed that PAE can improve the number and activity of neurons, increase the length and number of dendrites in hippocampus, decrease the Vv value and PE value of neuronal nucleus and mitochondrial structure significantly, increase the s value and L value in nucleus structure, decrease the s value and L value in mitochondrial structure, and improve the learning and memory ability of rats significantly. And PAE can strengthen the ability of antioxidant stress confirmed by increasing the activity of SOD and reducing the production of MDA. The results of western blot, immunohistochemistry and immunofluorescence showed that PAE could reduce the level of TRPM2 and increase the expression of NR2B.
Conclusions
Taken together, our findings provide evidence that the neuroprotective effects of PAE in VD rats maybe through TRPM2 inhibition and subsequent activation of NMDAR signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.