Aims and Objectives To determine the health‐related quality of life (HRQoL) of COVID‐19 patients after discharge and its predicting factors. Background COVID‐19 has caused a worldwide pandemic and led a huge impact on the health of human and daily life. It has been demonstrated that physical and psychological conditions of hospitalised COVID‐19 patients are impaired, but the studies focus on physical and psychological conditions of COVID‐19 patients after discharge from hospital are rare. Design A multicentre follow‐up study. Methods This was a multicentre follow‐up study of COVID‐19 patients who had discharged from six designated hospitals. Physical symptoms and HRQoL were surveyed at first follow‐up (the third month after discharge). The latest multiple laboratory findings were collected through medical examination records. This study was performed and reported in accordance with STROBE checklist. Results Three hundred eleven patients (57.6%) were reported with one or more physical symptoms. The scores of HRQoL of COVID‐19 patients at third month after discharge, except for the dimension of general health, were significantly lower than Chinese population norm ( p < .001). Results of logistic regression showed that female (odds ratio (OR): 1.79, 95% confidence interval (CI): 1.04–3.06), older age (≥60 years) (OR: 2.44, 95% CI: 1.33–4.47) and the physical symptom after discharge (OR: 40.15, 95% CI: 9.68–166.49) were risk factors for poor physical component summary; the physical symptom after discharge (OR: 6.68, 95% CI: 4.21–10.59) was a risk factor for poor mental component summary. Conclusions Health‐related quality of life of discharged COVID‐19 patients did not come back to normal at third month after discharge and affected by age, sex and the physical symptom after discharge. Relevance to clinical practice Healthcare workers should pay more attention to the physical and psychological rehabilitation of discharged COVID‐19 patients. Long‐term follow‐up on COVID‐19 patients after discharge is needed to determine the long‐term impact of COVID‐19.
COX-2 and HER-2 are important markers for invasion and metastasis of colorectal cancer, and they act together to regulate the invasion and metastasis of colorectal cancer.
The global pandemic of COVID-19 has attracted extensive drug searching interets for the new coronavirus SARS-CoV-2. Although currently several of clinically used “old” drugs have been repurposed to this new disease for the urgent clinical investigation, there is still great demand for more effective therapies for the anti-infections. Here we report the discovery that an “old” drug Emetine could potently inhibit SARS-CoV-2 virus replication and displayed virus entry blocking effect in Vero cells at low dose. In addition, Emetine could significantly reduce the lipopolysaccharide (LPS) induced interleukin-6 (IL-6) protein level and moderately reduce the tumor necrosis factor (TNF-α) protein level in the M1 polarized THP-1 macrophages. In vivo animal pharmacokinetics (PK) study revealed that Emetine was enriched in the lung tissue and had a long retention time (over 12 h). With 1 mg/kg single oral dose, the effective concentration of Emetine in lung was up to 1.8 μM (mice) and 1.6 μM (rats) at 12 h, which is over 200-fold higher than the EC50 of the drug. The potent in vitro antiviral replication efficacy and the high enrichment in target tissue, combining with the well documented safety profiles in human indicate that low dose of Emetine might be a potentially effective anti-SARS-CoV-2 infection therapy.
Abstract. Colorectal cancer (CRC) is among the main tumor-related causes of death worldwide. The fact that the majority of the patients develop resistance to chemoradiotherapy (CRT) is a major obstacle for the treatment of CRC. In order to develop more effective treatment strategies, it is crucial to elucidate the mechanisms underlying the development of resistance to CRT. Several studies have recently indicated the regulatory effects of microRNAs (miRNAs) in response to antitumor agents. For example, miR-34a attenuates the chemoresistance of colon cancer to 5-FU by inhibiting E2F3 and SIRT1. The miR-34a mimic MRX34 is the first synthetic miRNA to have been entered into clinical trials. miR-21 prevents tumor cell stemness, invasion and drug resistance, which are required for the development of CRC. These findings suggest that miRNAs represent a focus in the research of novel cancer treatments aimed at sensitizing cancer cells to chemotherapeutic drugs. The aim of the present study was to review the functions of miRNAs and investigate the roles of miRNAs in CRC radioresistance or chemoresistance. Furthermore, the potential of including miRNAs in therapeutic strategies and using them as molecular biomarkers for predicting radiosensitivity and chemosensitivity was discussed.
Colorectal cancer (CRC) is one of the major types of cancer and causes of mortality worldwide, and it remains the third most common cause of cancer‑associated mortality worldwide. MicroRNAs (miRNAs) are a class of small RNAs, which have been shown to be associated with CRC. In the present study, an MTT assay and proliferating cell nuclear antigen (PCNA) protein examination assay were performed to detect RKO cell viability. Hoechst staining, and caspase‑3 activity and BrdU incorporation assays were performed to detect RKO cell apoptosis, respectively. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analyses were used to analyze the expression of cyclooxygenase‑2 (COX‑2). Western blot analysis was also used to analyze the expression of vascular endothelial growth factor (VEGF) and mitogen‑activated protein kinase (MAPK) signal molecules, including extracellular signal‑regulated kinase (ERK), p38 and c‑Jun N‑terminal kinase (JNK). The target genes of miR-125 were predicted using a double luciferase reporter gene assay. The results of the MTT assay showed that RKO cell viability was decreased by an miRNA-125 mimic and increased by the miRNA-125 inhibitor. The RKO cell viability was significantly correlated with the expression of PCNA. The migration of RKO cells was significantly downregulated in the miR-125 mimics‑transfected cells and upregulated in the miRNA-125 inhibitor‑transfected cells. The results of Hoechst staining and the caspase‑3 activity and BrdU incorporation assays showed that RKO cell apoptosis was increased following miRNA-125 mimic transfection and decreased following miRNA-125 inhibitor transfection. The results of the RT‑qPCR and western blot analysis showed that the expression of COX‑2 was increased in the miR-125 mimic‑transfected cells and decreased in the miR-125 inhibitor‑transfected cells. Using an online miRNA target prediction database, the double luciferase reporter gene assay showed that miR‑125 targeted and inhibited the expression of VEGF through target sites located in the 3' untranslated region of VEGF mRNA. In conclusion, the abnormal expression of miR‑125 was found to be closely associated with CRC. Therefore, miR‑125 may be a novel therapeutic target for CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.