The polylactic acid (PLA) nanofiber membranes reinforced with hyperbranched PLA‐modified cellulose nanocrystals (H‐PLA‐CNCs) were prepared by electrospinning. The H‐PLA‐CNCs and the nanofiber membranes were researched by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The outcomes embodied that the cellulose nanocrystals (CNCs) could be successfully improved by the hyperbranched PLA, which would offer powerful CNCs/matrix interfacial adhesion. Thus, the mechanical and shape memory properties of PLA can be improved by adding the H‐PLA‐CNCs. In particular, when the addition of H‐PLA‐CNCs was 7 wt%, the tensile strength and an ultimate strain of PLA composite nanofiber membranes was 15.56 MPa and 25%, which was 228% and 72.4% higher than that of neat PLA, respectively. In addition, the shape recovery rate of the PLA/5 wt% H‐PLA‐CNCs composite nanofiber membrane was 93%, which was 37% higher than that of neat PLA. We expected that this present study would provide unremitting efforts for the development of more effective approaches to prepare biology basic shape memory membranes with high mechanical properties.
The underground temperature distribution and variation are important for the development and utilization of shallow geothermal energy and underground space. In this paper, a remote ground temperature monitoring system was established in Chongqing, located in southwest China and the ground temperature distribution and its variation with seasons of the 100m underground depth was measured from June 2010 to June 2011. The results show that, in the typical geo-structure of Chongqing, the variational ground temperature zone is from 0m to 10m, where the ground temperature is strongly affected by the change of ambient temperature. Below 11m depth, the ground temperature does not change with seasons, i.e., it is the constant ground temperature zone. In the constant temperature zone below 40 meter depth, the geothermal gradient is about 0.02°C/m. Baggs’s empirical formula was applied to predict the ground temperature distribution history at different ground depths. The results show a good agreement with the measured data.
As a two-dimensional material, graphene has attracted increasing attention as heat dissipation material owing to its excellent thermal transport property. In this work, we fabricated sisal nanocrystalline cellulose/functionalized graphene papers (NPGs) with high thermal conductivity by vacuum-assisted self-assembly method. The papers exhibit in-plane thermal conductivity as high as 21.05 W m−1 K−1 with a thermal conductivity enhancement of 403% from the pure cellulose paper. The good thermal transport properties of NPGs are attributed to the strong hydrogen-bonding interaction between nanocrystalline cellulose and functionalized graphene and the well alignment structure of NPGs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.