Raytheon Vision Systems (RVS, Goleta, CA) in collaboration with HRL Laboratories (Malibu, CA) is contributing to the maturation and manufacturing readiness of third-generation, dual-color, HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and fabrication of 256 ϫ 256 30-µm unit-cell staring FPAs that provide dual-color detection in the mid-wavelength infrared (MWIR) and long wavelength infrared (LWIR) spectral regions. The FPAs configured for MWIR/MWIR, MWIR/LWIR, and LWIR/LWIR detection are used for target identification, signature recognition, and clutter rejection in a wide variety of space and ground-based applications. Optimized triple-layer heterojunction (TLHJ) device designs and molecular beam epitaxy (MBE) growth using in-situ controls has contributed to individual bands in all dual-color FPA configurations exhibiting high operability (>99%) and both performance and FPA functionality comparable to state-of-the-art, single-color technology. The measured spectral cross talk from out-of-band radiation for either band is also typically less than 10%. An FPA architecture based on a single-mesa, single-indium bump, and sequential-mode operation leverages current single-color processes in production while also providing compatibility with existing second-generation technologies.
For small pixel, infrared (IR) focal plane arrays (FPAs), Raytheon Vision Systems' architecture for integrated, dual-band detectors uses the sequential mode of the n-p ϩ -n configuration. There is a single indium bump per pixel, leaving the p ϩ layer floating, and the operating polarity of the bias selects the spectral sensitivity by reverse-biasing the active p-n junction. Photogenerated minority carriers in the absorber layer of the forward-biased inactive photodiode are lost through recombination. This paper is the first report of a new optical crosstalk mechanism that occurs in sequential-mode, dual-band detectors. In the long-wavelength mode under out-of-band, short-wavelength illumination, radiative recombination yields emission near the bandgap energy of the shortwavelength absorber layer, resulting in a spurious short-wavelength response that appears as spectral crosstalk. We present experimental and device modeling results on the spectral crosstalk in molecular-beam-epitaxy-grown HgCdTe arrays with the cutoff wavelength of both bands in the 4-5-µm range.
We present a detailed comparison between the operational performance of "conventional" and "foveating" large format infrared focal plane arrays (FPAs). Foveating FPAs provide its users with a substantial advantage when compared with imaging sensors currently in use. This paper details the differences between foveating and traditional FPAs and provides objective comparisons to aid systems designers select the appropriate imaging device for their applications.A variety of on-FPA operations are performed with foveating sensors; some of these operations require the use of a companion processor to spatially reprogram the foveal sensor. We will compare several critical sensor performance parameters including: frame rate, data bandwidth, spatial and temporal noise. In addition, operational comparisons will be made to contrast the various applications that may be best suited for the two respective imaging sensor types.
The flexible nature of molecular-beam epitaxy (MBE) growth is beneficial for HgCdTe infrared-detector design and allows for tailored growths at lower costs and larger focal-plane array (FPA) formats. Control of growth dynamics gives the MBE process a distinct advantage in the production of multicolor devices, although opportunities for device improvement still exist. Growth defects can inhibit pixel performance and reduce the operability in FPAs, so it is important to understand and evaluate their properties and impact on detector performance. The object of this paper is to understand and correlate the effects of macrodefects on two-color detector performance. We observed the location of single-crystal and polycrystalline regions on planar and cross-sectioned surfaces of two-color device structures when void defects were viewed by scanning electron microscopy (SEM). Compositional analysis via energy dispersive x-ray analysis (EDXA) of voids in the cross section showed elevated Te and reduced Hg when compared to defect-free growth areas. The second portion of this study examined the correlation of macrodefects with pixel operability and diode current-voltage (I-V) characteristics in mid-wavelength infrared (MWIR)/MWIR (M/M) and long wavelength infrared (LWIR)/LWIR (L/L) two-color devices. The probability of diode failure when a void is present is 98% for M/M and 100% for L/L. Voids in two-color detectors also impact diodes neighboring their location; the impact is higher for L/L detectors than M/M detectors. All void-containing diodes showed early breakdown in the I-V characteristics in one or both bands. High dislocation densities were observed surrounding voids; the high density spread further from the void for L/L detectors compared to M/M detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.