Highly tetrahedral, dense amorphous carbon (ta-C) films have been deposited using rf sputtering of graphite by an unbalanced magnetron with intense dc Ar-ion plating at low temperatures (<70 °C). The ratio of the argon ion flux to neutral carbon flux Φi/Φn is about 5. The film density and compressive stress are found to pass through a maximum of 2.7 g/cm3 and 16 GPa, respectively, at an ion plating energy of about 100 eV. Experiments with higher ion flux ratios of Φi/Φn=10 show that it is possible to deposit carbon films with densities up to 3.1 g/cm3 and sp3 contents up to 87%. Deposition of ta-C in this experiment when the energetic species is Ar appears to require a minimum stress of 14 GPa to create significant sp3 bonding, which contrasts with the continuous increase in sp3 content with stress when the energetic species is C ions themselves. These results are used to discuss possible deposition mechanisms.
We have used 3He nuclear reaction analysis to measure the growth of the wetting layer as a function of immiscibility (quench depth) in blends of deuterated polystyrene and poly(alpha-methylstyrene) undergoing surface-directed spinodal decomposition. We are able to identify three different laws for the surface layer growth with time t. For the deepest quenches, the forces driving phase separation dominate (high thermal noise) and the surface layer grows with a t(1/3) coarsening behavior. For shallower quenches, a logarithmic behavior is observed, indicative of a low noise system. The crossover from logarithmic growth to t(1/3) behavior is close to where a wetting transition should occur. We also discuss the possibility of a "plating transition" extending complete wetting to deeper quenches by comparing the surface field with thermal noise. For the shallowest quench, a critical blend exhibits a t(1/2) behavior. We believe this surface layer growth is driven by the curvature of domains at the surface and shows how the wetting layer forms in the absence of thermal noise. This suggestion is reinforced by a slower growth at later times, indicating that the surface domains have coalesced. Atomic force microscopy measurements in each of the different regimes further support the above. The surface in the region of t(1/3) growth is initially somewhat rougher than that in the regime of logarithmic growth, indicating the existence of droplets at the surface.
We have used ion beam analysis and scanning near-field optical microscopy to characterize the three-dimensional domain structure of a thin film of a phase-separating polymer mixture. In the initially mixed film, there first occurs coverage of one of its surfaces by an unbroken layer of one phase; between this -wet. surface and the substrate, layers of domains form. Eventually, the layered domain structure becomes unstable, and a transformation occurs to the equilibrium wetting state where both phases are in contact with both surfaces, causing a phase separation to be purely two-dimensional at later times. During this <
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.