Abstract-This paper shows that, for a given power budget, a practical phase-locked loop (PLL)-based clock multiplier generates less jitter than a delay-locked loop (DLL) equivalent. This is due to the fact that the delay cells in a PLL ring-oscillator can consume more power per cell than their counterparts in the DLL. We can show that this effect is stronger than the notorious jitter accumulation effect that occurs in the voltage-controlled oscillator (VCO) of a PLL. First, an analysis of the stochastic-output jitter of the architectures, due to the most important noise sources, is presented. Then, another important source of jitter in a DLL-based clock multiplier is treated, namely the stochastic mismatch in the delay cells which compose the DLL voltage-controlled delay line (VCDL). An analysis is presented that relates the stochastic spread of the delay of the cells to the output jitter of the clock multiplier. A circuit design technique, called impedance level scaling, is then presented which allows the designer to optimize the noise and mismatch behavior of a circuit, independently from other specifications such as speed and linearity. Applying this technique on a delay cell design yields a direct tradeoff between noise induced jitter and power usage, and between stochastic mismatch induced jitter and power usage.
Abstract-This paper demonstrates a low-jitter clock multiplier unit that generates a 10-GHz output clock from a 2.5-GHz reference clock. An integrated 10-GHz LC oscillator is locked to the input clock, using a simple and fast phase detector circuit that overcomes the speed limitation of a conventional tri-state phase frequency detector due to the lack of an internal feedback loop. A frequency detector guarantees PLL locking without degenerating jitter performance. The clock multiplier is implemented in a standard 0.18-m CMOS process and achieves a jitter generation of 0.22 ps while consuming 100 mW power from a 1.8-V supply.Index Terms-Charge pump, clock multiplication, clock generation, clock multiplier unit (CMU), CMOS, frequency detector, frequency multiplication, frequency synthesizer, high speed, low jitter, low noise, phase frequency detector (PFD), phase detector, phase locked loops (PLL), phase noise, voltage-controlled oscillator (VCO).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.