Context. Dusty star-forming galaxies are among the most prodigious systems at high redshift (z > 1), characterized by high starformation rates and huge dust reservoirs. The bright end of this population has been well characterized in recent years, but considerable uncertainties remain for fainter dusty star-forming galaxies, which are responsible for the bulk of star formation at high redshift and thus play a key role in galaxy growth and evolution. Aims. In this first paper of our series, we describe our methods for finding high redshift faint dusty galaxies using millimeter observations with ALMA. Methods. We obtained ALMA 1.1 mm mosaic images for three strong-lensing galaxy clusters from the Frontier Fields Survey, which constitute some of the best studied gravitational lenses to date. The ≈2 × 2 mosaics overlap with the deep HST WFC3/IR footprints and encompass the high magnification regions of each cluster for maximum intrinsic source sensitivity. The combination of extremely high ALMA sensitivity and the magnification power of these clusters allows us to systematically probe the sub-mJy population of dusty star-forming galaxies over a large surveyed area. Results. We present a description of the reduction and analysis of the ALMA continuum observations for the galaxy clusters Abell 2744 (z = 0.308), MACS J0416.1-2403 (z = 0.396) and MACS J1149.5+2223 (z = 0.543), for which we reach observed rms sensitivities of 55, 59 and 71 µJy beam −1 respectively. We detect 12 dusty star-forming galaxies at S /N ≥ 5.0 across the three clusters, all of them presenting coincidence with near-infrared detected counterparts in the HST images. None of the sources fall close to the lensing caustics, thus they are not strongly lensed. The observed 1.1 mm flux densities for the total sample of galaxies range from 0.41 to 2.82 mJy, with observed effective radii spanning 0. 05 to 0. 37 ± 0. 21. The lensing-corrected sizes of the detected sources appear to be in the same range as those measured in brighter samples, albeit with possibly larger dispersion.
Context. The Hubble and Spitzer Space Telescope surveys of the Frontier Fields provide extremely deep images around six massive, strong-lensing clusters of galaxies. The ALMA Frontier Fields survey aims to cover the same fields at 1.1 mm, with maps reaching (unlensed) sensitivities of <70 µJy, in order to explore the properties of background dusty star-forming galaxies. Aims. We report on the multi-wavelength photometric analysis of all 12 significantly detected (>5σ) sources in the first three Frontier Fields clusters observed by ALMA, based on data from Hubble and Spitzer, the Very Large Telescope and the Herschel Space Observatory. Methods. We measure the total photometry in all available bands and determine the photometric redshifts and the physical properties of the counterparts via SED-fitting. In particular, we carefully estimate the far-infrared (FIR) photometry using 1.1 mm priors to limit the misidentification of blended FIR counterparts, which strongly affect some flux estimates in previous FIR catalogs. Due to the extremely red nature of these objects, we used a large range of parameters (e.g. 0.0 < A v < 20.0) and templates (including AGNs and ULIRGs models). Results. We identify robust near-infrared (NIR) counterparts for all 11 sources with K s detection, the majority of which are quite red, with eight having F814W − K s 4 and five having F160W − [4.5] 3. From the FIR point of view, all our objects have z phot ∼ 1-3, whereas based on the optical SED one object prefers a high-z solution (z ≥ 7). Five objects among our sample have spectroscopic redshifts from the GLASS survey for which we can reproduce their SEDs with existing templates. This verification confirms the validity of our photometric redshift methodology. The mean redshift of our sample is z phot = 1.99 ± 0.27. All 1.1 mm selected objects are massive (10.0 < log[M (M)] < 11.5), with high star formation rates (log[SFR(M /yr)] ≈ 1.6) and high dust contents (8.1 < log[M dust (M)] < 8.8), consistent with previous ALMA surveys.
Context. Most sub-mm emission line studies of galaxies to date have targeted sources with known redshifts where the frequencies of the lines are well constrained. Recent blind line scans circumvent the spectroscopic redshift requirement, which could represent a selection bias. Aims. Our aim is to detect emission lines present in continuum oriented observations. The detection of such lines provides spectroscopic redshift information and yields important properties of the galaxies. Methods. We perform a search for emission lines in the ALMA observations of five clusters which are part of the Frontier Fields and assess the reliability of our detection. We additionally investigate plausibility by associating line candidates with detected galaxies in deep near-infrared imaging. Results. We find 26 significant emission lines candidates, with observed line fluxes between 0.2-4.6 Jy km s −1 and velocity dispersions (FWHM) of 25-600 km s −1 . Nine of these candidates lie in close proximity to near-infrared sources, boosting their reliability; in six cases the observed line frequency and strength are consistent with expectations given the photometric redshift and properties of the galaxy counterparts. We present redshift identifications, magnifications and molecular gas estimates for the galaxies with identified lines. We show that two of these candidates likely originate from starburst galaxies, one of which is a so-called jellyfish galaxy that is strongly affected by ram pressure stripping, while another two are consistent with being main sequence galaxies based in their depletion times. Conclusions. This work highlights the degree to which serendipitous emission lines can be discovered in large mosaic continuum observations when deep ancillary data are available. The low number of high-significance line detections, however, confirms that such surveys are not as optimal as blind line scans. We stress that Monte Carlo simulations should be used to assess the line detections significances, since using the negative noise suffers from stochasticity and incurs significantly larger uncertainties.
Context. The Hubble Frontier Fields offer an exceptionally deep window into the high-redshift universe, covering a substantially larger area than the Hubble Ultra-Deep field at low magnification and probing 1–2 mag deeper in exceptional high-magnification regions. This unique parameter space, coupled with the exceptional multi-wavelength ancillary data, can facilitate for useful insights into distant galaxy populations. Aims. We aim to leverage Atacama Large Millimetre Array (ALMA) band 6 (≈263 GHz) mosaics in the central portions of five Frontier Fields to characterize the infrared (IR) properties of 1582 ultraviolet (UV)-selected Lyman-Break Galaxies (LBGs) at redshifts of z ∼ 2–8. We investigated individual and stacked fluxes and IR excess (IRX) values of the LBG sample as functions of stellar mass (M⋆), redshift, UV luminosity and slope β, and lensing magnification. Methods. LBG samples were derived from color-selection and photometric redshift estimation with Hubble Space Telescope photometry. Spectral energy distributions -templates were fit to obtain luminosities, stellar masses, and star formation rates for the LBG candidates. We obtained individual IR flux and IRX estimates, as well as stacked averages, using both ALMA images and u–v visibilities. Results. Two (2) LBG candidates were individually detected above a significance of 4.1-σ, while stacked samples of the remaining LBG candidates yielded no significant detections. We investigated our detections and upper limits in the context of the IRX–M⋆ and IRX–β relations, probing at least one dex lower in stellar mass than past studies have done. Our upper limits exclude substantial portions of parameter space and they are sufficiently deep in a handful of cases to create mild tension with the typically assumed attenuation and consensus relations. We observe a clear and smooth trend between M⋆ and β, which extends to low masses and blue (low) β values, consistent with expectations from previous works.
Context. The field of galaxy evolution will make a great leap forward in the next decade as a consequence of the huge effort by the scientific community in multi-object spectroscopic facilities. Various future surveys will enormously increase the number of available galaxy spectra, providing new insights into unexplored areas of research. To maximise the impact of such incoming data, the analysis methods must also step up, extracting reliable information from the available spectra. It is therefore urgent to refine and test reliable analysis tools that are able to infer the properties of a galaxy from medium- or high-resolution spectra. Aims. In this paper we aim to investigate the limits and the reliability of different spectral synthesis methods in the estimation of the mean stellar age and metallicity. These two quantities are fundamental to determine the assembly history of a galaxy by providing key insights into its star formation history. The main question this work aims to address is which signal-to-noise ratios (S/N) are needed to reliably determine the mean stellar age and metallicity from a galaxy spectrum and how this depends on the tool used to model the spectra. Methods. To address this question we built a set of realistic simulated spectra containing stellar and nebular emission, reproducing the evolution of a galaxy in two limiting cases: a constant star formation rate and an exponentially declining star formation with a single initial burst. We degraded the synthetic spectra built from these two star formation histories (SFHs) to different S/N and analysed with three widely used spectral synthesis codes, namely FADO, STECKMAP, and STARLIGHT, assuming similar fitting set-ups and the same base of spectral templates. Results. For S/N ≤ 5 all the three tools show a large diversity in the results. The FADO and STARLIGHT tools find median differences in the light-weighted mean stellar age of ∼0.1 dex, while STECKMAP shows a higher value of ∼0.2 dex. For S/N > 50 the median differences in FADO are ∼0.03 dex (∼7%), a factor 3 and 4 lower than the 0.08 dex (∼20%) and 0.11 dex (∼30%) obtained from STARLIGHT and STECKMAP, respectively. Detailed investigations of the best-fit spectrum for galaxies with overestimated mass-weighted quantities point towards the inability of purely stellar models to fit the observed spectral energy distribution around the Balmer jump. Conclusions. Our results imply that when a galaxy enters a phase of high specific star formation rate (sSFR) the neglect of the nebular continuum emission in the fitting process has a strong impact on the estimation of its SFH when purely stellar fitting codes are used, even in presence of high S/N spectra. The median value of these differences are of the order of 7% (FADO), 20% (STARLIGHT), and 30% (STECKMAP) for light-weighted quantities, and 20% (FADO), 60% (STARLIGHT), and 20% (STECKMAP) for mass-weighted quantities. More specifically, for a continuous SFH both STECKMAP and STARLIGHT overestimate the stellar age by > 2 dex within the first ∼100 Myr even for high S/N spectra. This bias, which stems from the neglect of nebular continuum emission, obviously implies a severe overestimation of the mass-to-light ratio and stellar mass. But even in the presence of a mild contribution from nebular continuum, there is still the possibility to misinterpret the data as a consequence of the poor quality of the observations. Our work underlines once more the importance of a self-consistent treatment of nebular emission, as implemented in FADO, which, according to our analysis, is the only viable route towards a reliable determination of the assembly of any high-sSFR galaxy at high and low redshift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.