The behaviour of a tungsten first wall is studied under the irradiation conditions predicted for the different operational scenarios of the European laser fusion project HiPER, which is based on direct drive targets and an evacuated dry wall chamber. The scenarios correspond to different stages in the development of a nuclear fusion reactor, from proof of principle (bunch mode facility) to economic feasibility (pre-commercial power plant). This work constitutes a quantitative study to evaluate first wall performance under realistic irradiation conditions in the different scenarios. We calculated the radiation fluxes assuming the geometrical configurations reported so far for HiPER. Then, we calculated the irradiation-induced evolution of first wall temperature and the thermomechanical response of the material. The results indicate that the first wall will plastically deform up to a few microns underneath the surface. Continuous operation in a power plant leads to fatigue failure with crack generation and growth. Finally, crack propagation and the minimum tungsten thickness required to fulfil the first wall protection role is studied. The response of tungsten as a first wall material as well as its main limitations will be discussed for the HiPER scenarios.
The atomic composition, structural, morphological, and optical properties of N-rich copper nitride thin films have been investigated prior to and after annealing them in vacuum at temperatures up to 300°C. Films were characterized by means of ion-beam analysis ͑IBMA͒, X-ray diffraction ͑XRD͒, atomic force microscopy ͑AFM͒, and spectroscopic ellipsometry techniques ͑SE͒. The data reveal that even when the total ͑integrated over the whole thickness͒ atomic composition of the films remains constant, nitrogen starts to migrate from the bulk to the film surface, without out-diffusing, at temperatures as low as 100°C. This migration leads to two chemical phases with different atomic concentration of nitrogen, lattice parameters, and crystallographic orientation but with the same crystal structure. XRD experimental and Rietveld refined data seem to confirm that nitrogen excess accommodates in interstitial locations within the anti-ReO 3 crystal lattice forming a solid solution. The influence of nitrogen migration on the optical ͑electronic͒ properties of the films will be discussed.
The influence of nitrogen excess on the optical response of N-rich Cu 3 N films is reported. The optical spectra measured in the wavelength range from 0.30 to 20.00 µm have been correlated with the elemental film composition which can be adjusted in the nitrogen atomic percentage (at%) range from 27 ± 2 up to 33 ± 2. The absorption spectra for the N-rich films are consistent with direct optical transitions corresponding to the stoichiometric semiconductor Cu 3 N plus a free-carrier contribution that can be tuned in accordance with the N-excess. The data are consistent with the incorporation of the excess N in the lattice as an electron acceptor that generates free holes.
The trapping and mobility of hydrogen in nanostructured tungsten grain boundaries (GBs) have been studied by combining experimental and density functional theory (DFT) data. Experimental results show that nanostructured W coatings with a columnar grain structure and a large number of (1 1 0)/(2 1 1) interfaces retain more H than coarsed grained W samples. To investigate the possible influence of GBs on H retention, a complete energetic analysis of a non-coherent W(1 1 0)/W(1 1 2) interface has been performed employing DFT. Our results show that this kind of non-coherent interface largely attracts point defects (both a H atom and a metallic monovacancy separately) and that the presence of these interfaces contributes to a decrease in the migration energy of the H atoms with respect to the bulk value. When both the W monovacancy and H atom are introduced together into the system, the HV complex becomes the most stable configuration and one of the mechanisms explaining the H retention in the radiation damaged GB observed experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.