In plasma-hydrogenated p-type Czochralski silicon, rapid thermal donor (TD) formation is achieved, resulting from the catalytic support of hydrogen. The n-type counter doping by TD leads to a p-n junction formation. A simple method for the indirect determination of the diffusivity of hydrogen via applying the spreading resistance probe measurements is presented. Hydrogen diffusion in silicon during both plasma hydrogenation and post-hydrogenation annealing is investigated. The impact of the hydrogenation duration, annealing temperature, and resistivity of the silicon wafers on the hydrogen diffusion is discussed. Diffusivities of hydrogen are determined in the temperature range 270–450°C. The activation energy for the hydrogen diffusion is deduced to be 1.23eV. The diffusion of hydrogen is interpreted within the framework of a trap-limited diffusion mechanism. Oxygen and hydrogen are found to be the main traps.
The impact of plasma hydrogenation on the subsequent formation of thermal donors at 450 °C in n-type oxygen-doped high-resistivity float-zone silicon is investigated by a combination of electrical and spectroscopic techniques. It is shown that the increase of the doping concentration can be explained by the creation of two sets of donors. The first one is the classical double oxygen thermal donors (OTDs), which are introduced with a nearly uniform concentration profile across the sample thickness, while the second type of donors is shallower and most likely hydrogen related. The latter show a pronounced concentration profile towards the surface and they form and disappear at a much faster rate than the OTDs at 450 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.