We present the design of a positron emission tomograph (PET) with flexible geometry dedicated to in vivo studies of small animals (TierPET). The scanner uses two pairs of detectors. Each detector consists of 400 small individual yttrium aluminum perovskite (YAP) scintillator crystals of dimensions 2 x 2 x 15 mm3, optically isolated and glued together, which are coupled to position-sensitive photomultiplier tubes (PSPMT's). The detector modules can be moved in a radial direction so that the detector-to-detector spacing can be varied. Special hardware has been built for coincidence detection, position detection, and real-time data acquisition, which is performed by a PC. The single-event data are transferred to workstations where the radioactivity distribution is reconstructed. The dimensions of the crystals and the detector layout are the result of extensive simulations which are described in this report, taking into account sensitivity, spatial resolution and additional parameters like parallax error or scatter effects. For the three-dimensional (3-D) reconstruction a genuine 3-D expectation-maximization (EM)-algorithm which can include the characteristics of the detector system has been implemented. The reconstruction software is flexible and matches the different detector configurations. The main advantage of the proposed animal PET scanner is its high flexibility, allowing the realization of various detector-system configurations. By changing the detector-to-detector spacing, the system is capable of either providing good spatial resolution or high sensitivity for dynamic studies of pharmacokinetics.
Abstract-A new two-dimensional position-sensitive detector system for small-angle neutron scattering experiments is under development. It is based on a 60 60 cm 2 large 6 Li-glass scintillator for the neutron capture and dispersion of the emitted light on an array of photomultiplier tubes for the derivation of the event position. For subthermal neutrons of 8 Å, an efficiency of 96% and a spatial resolution of 8 mm are to be achieved. Major improvements have been made in the signal-and data-processing branch, which aims at an electronical dead time of 1 s. A fast digitalization method using free-running analog-to-digital converters for each photomultiplier combined with field-programmable gate arrays for a parallel event detection in all channels has been applied. A subsequent farm of up to 16 floating-point digital signal processors is used to provide enough computing power for an improved reconstruction of the event position according to a maximum likelihood method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.