Stir casting is an economical process for the fabrication of aluminum matrix composites. There are many parameters in this process, which affect the final microstructure and mechanical properties of the composites. In this study, micron-sized SiC particles were used as reinforcement to fabricate Al-3 wt% SiC composites at two casting temperatures (680 and 850 °C) and stirring periods (2 and 6 min). Factors of reaction at matrix/ ceramic interface, porosity, ceramic incorporation, and agglomeration of the particles were evaluated by scanning electron microscope (SEM) and high-resolution transition electron microscope (HRTEM) studies. From microstructural characterizations, it is concluded that the shorter stirring period is required for ceramic incorporation to achieve metal/ceramic bonding at the interface. The higher stirring temperature (850 °C) also leads to improved ceramic incorporation. In some cases, shrinkage porosity and intensive formation of Al4C3 at the metal/ceramic interface are also observed. Finally, the mechanical properties of the composites were evaluated, and their relation with the corresponding microstructure and processing parameters of the composites was discussed. AbstractStir casting is an economical process for fabricating aluminium matrix composites. There are
The use of metal matrix composites (MMCs) in a variety of products is significantly increasing with time due to the fact that their properties can be tailored and designed to suit specific applications. However, the future usage of MMC products is very much dependent on their beneficial aspects and hence it is critical to ensure in a robust repeatable manner the superior physical property advantages compared to conventional unreinforced monolithic metal counterparts. Although numerous routes are available for production of MMC products, each of them has their own advantages and disadvantages. This article provides an overview of advanced production routes for MMCs. The discussion also highlights challenges and presents a future prospectus for MMCs. Powder metallurgy and casting routes are still extensively used for production of MMCs. Aluminum alloys are today the most commonly used matrix materials in MMC products.Carbides (eg, SiC, TiC, and B 4 C), carbon allotropes (eg, CNTs and graphene), and alumina (Al 2 O 3) are currently the most used reinforcement materials. Nevertheless, the use of nano and of hybrid reinforcements are seeing increased usage in niche applications. Additive manufacturing (AM) is discussed as a novel production route for MMC products. This process represents a promising method for the production of MMC products.
Due to a high propensity of nano-particles to agglomerate, making aluminium matrix composites with a uniform dispersion of the nano-particles using liquid routes is an exceptionally difficult task. In this study, an innovative approach was utilised to prevent agglomeration of nano-particle by encapsulating SiC nanoparticles using graphene sheets during ball milling. Subsequently, the milled mixture was incorporated into A356 molten alloy using non-contact ultrasonic vibration method. Two different shapes for graphene sheets were characterised using HRTEM, including onion-like shells encapsulating SiC particles and disk-shaped graphene nanosheets. This resulted in 45% and 84% improvement in yield strength and tensile ductility, respectively. The former was ascribed to the Orowan strengthening mechanism, while the latter is due primarily to the fiber pull-out mechanism, brought about by the alteration of the solidification mechanism from particle pushing to particle engulfment during solidification as a consequence of high thermal conductive graphene sheets encapsulating SiC particles. Due to a high propensity of nano-particles to agglomerate, making aluminium matrix composites with 13 a uniform dispersion of the nano-particles using liquid routes is an exceptionally difficult task. In this 14 study, an innovative approach was utilised to prevent agglomeration of nano-particles by 15encapsulating SiC nano-particles using graphene sheets during ball milling. Subsequently, the milled 16 mixture was incorporated into A356 molten alloy using non-contact ultrasonic vibration method. Two 17 different shapes for graphene sheets were characterised using HRTEM, including onion-like shells 18encapsulating SiC particles and disk-shaped graphene nanosheets. This resulted in 45% and 84% 19improvement in yield strength and tensile ductility, respectively. The former was ascribed to the 20Orowan strengthening mechanism, while the latter is due primarily to the fiber pull-out mechanism, 21 brought about by the alteration of the solidification mechanism from particle pushing to particle
ab s t r a c tThree kinds of A356 based composites reinforced with 3 wt.% Al2O3 (average particle size: 170 lm), 3 wt.% SiC (average particle size: 15 lm), and 3 wt.% of mixed Al2O3-SiC powders (a novel composite with equal weights of reinforcement) were fabricated in this study via a two-step approach. This first process step was semi-solid stir casting, which was followed by rolling as the second process step. Electroless deposition of a copper coating onto the reinforcement was used to improve the wettability of the ceramic particles by the molten A356 alloy. From microstructural characterization, it was found that coarse alumina particles were most effective as obstacles for grain growth during solidification. The rolling process broke the otherwise present fine silicon platelets, which were mostly present around the Al2O3 particles. The rolling process was also found to cause fracture of silicon particles, improve the distribution of fine SiC particles, and eliminate porosity remaining after the first casting process step. Examination of the mechanical properties of the obtained composites revealed that samples which contained a bimodal ceramic reinforecment of fine SiC and coarse Al2O3 particles had the highest
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.