The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria.
Many polymeric materials have been developed and introduced for bone regeneration. Especially, their nanofibrous forms are mostly applied for artificial extracellular matrices. Polymeric materials in their nanofibrous form show some potent properties such as high surface-to-volume ratio, tunable porosity, and ease of surface functionalization. Benefiting from the properties of their main polymer and additives, they can provide new opportunities for cell seeding, proliferation, and new 3D-tissue formation. This article focuses on most cited polymeric nanofibrous scaffolds fabricated by electrospinning and recent achievements. They were divided into two main categories: natural (collagen, silk, keratin, gelatin, chitosan, and alginate) and synthetic (e.g., polycaprolactone, polylactic acid, and polyglycolic acid) polymers. The role of several additives like hydroxyapatite, bone morphogenetic proteins (BMPs), tricalcium phosphate, and collagen type I in improving the adhesion, differentiation, and tissue formation of stem cells were discussed. Finally, the osteogenic capacity and ability of nanofibrous scaffolds to support the growth of clinically relevant bone tissue were briefly studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.