Nanotechnology has been widely exploited in recent years in various applications. Different sectors of medicine and treatment have also focused on the use of nanoproducts. One of the areas of interest in the treatment measures is the interaction between nanomaterials and immune system components. Engineered nanomaterials can stimulate the inhibition or enhancement of immune responses and prevent the detection ability of the immune system. Changes in immune function, in addition to the benefits, may also lead to some damage. Therefore, adequate assessment of the novel nanomaterials seems to be necessary before practical use in treatment. However, there is little information on the toxicological and biological effects of nanomaterials, especially on the potential ways of contacting and handling nanomaterials in the body and the body response to these materials. Extensive variation and different properties of nanomaterials have made it much more difficult to access their toxicological effects to the present. The present study aims to raise knowledge about the potential benefits and risks of using the nanomaterials on the immune system to design and safely employ these compounds in therapeutic purposes.
In this study, optimal conditions to form cellulose-MgO nanocomposite with antibacterial properties were evaluated. Applying the Taguchi method, 9 experiments were designed and the effects of different concentrations of biopolymers cellulose (0.5, 1 and 2 mg/ml), MgO nanoparticles (2, 4 and 8 mg/ml) and stirring times (30, 60 and 90 min) on antibacterial activity of synthesized nanocomposites were assessed. The characterizations of products were investigated by dynamic light scattering (DLS), raman spectroscopy, scanning electron microscope (SEM), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results showed that the nanocomposite produced in the conditions of experiment 9 (MgO 8 mg/ml, cellulose 2 mg/ml and stirring time of 60 min) has the strongest antibacterial activity. The outcomes of both methods of colony forming units (CFU) and disc diffusion indicated that the antibacterial activity of cellulose-MgO nanocomposite was signifi cantly higher than its components (P <0.05). Thermal analysis indicated improvement in the thermal stability of the cellulose biopolymer after the formation of the nanocomposite. Due to the improvement of the antibacterial properties of cellulose-MgO nanocomposite compared to its components, we can use it as a new antibacterial agent in the fi elds of pharmaceutical, medicine and dentistry.
Given the increase in global mortality rate due to various types of cancer, the present study aimed to develop optimal conditions for the synthesis of cellulose-magnesium oxide nanocomposite with favorable anticancer activity. For this purpose, the Taguchi method was used to design nine experiments with varied ratios of cellulose biopolymer, magnesium oxide nanoparticles and different stirring times. The scanning electron microscopy (SEM) images confirmed the formation of cellulose-magnesium oxide nanocomposite. The anticancer activity level of nine nanocomposites studied was evaluated using MTT assay on Michigan Cancer Foundation-7 (MCF-7) cell line. The nanocomposite synthesized in experiment 9 (8 mg/ml of magnesium oxide, 2 mg/ml of cellulose and stirring time of 60 min) showed the highest growth inhibitory activity on the cancer cells. Based on the attained results,e cellulose-magnesium oxide nanocomposite synthesized in optimal conditions can be used as an eligible anticancer agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.