We consider the aggregation equation ρ t − ∇ • (ρ∇K * ρ) = 0 in R n , where the interaction potential K models short-range repulsion and long-range attraction. We study a family of interaction potentials for which the equilibria are of finite density and compact support. We show global well-posedness of solutions and investigate analytically and numerically the equilibria and their global stability. In particular, we consider a potential for which the corresponding equilibrium solutions are of uniform density inside a ball of R n and zero outside. For such a potential, various explicit calculations can be carried out in detail. In one dimension we fully solve the temporal dynamics, and in two or higher dimensions we show the global stability of this steady state within the class of radially symmetric solutions. Finally, we solve the following restricted inverse problem: given a radially symmetric densityρ that is zero outside some ball of radius R and is polynomial inside the ball, construct an interaction potential K for whichρ is the steady state solution of the corresponding aggregation equation. Throughout the paper, numerical simulations are used to motivate and validate the analytical results.
Abstract.Variational techniques are used to analyze the problem of rigid-body dynamics with impacts. The theory of smooth Lagrangian mechanics is extended to a nonsmooth context appropriate for collisions, and it is shown in what sense the system is symplectic and satisfies a Noether-style momentum conservation theorem. Discretizations of this nonsmooth mechanics are developed by using the methodology of variational discrete mechanics. This leads to variational integrators which are symplectic-momentum preserving and are consistent with the jump conditions given in the continuous theory. Specific examples of these methods are tested numerically, and the long-time stable energy behavior typical of variational methods is demonstrated.
We consider a continuum aggregation model with nonlinear local repulsion given by a degenerate power-law diffusion with general exponent. The steady states and their properties in one dimension are studied both analytically and numerically, suggesting that the quadratic diffusion is a critical case. The focus is on finite-size, monotone and compactly supported equilibria. We also investigate numerically the long time asymptotics of the model by simulations of the evolution equation. Issues such as metastability and local/ global stability are studied in connection to the gradient flow formulation of the model. *
We consider the aggregation equation ρ t −∇·(ρ∇K * ρ) = 0 in R n , where the interaction potential K incorporates short-range Newtonian repulsion and long-range power-law attraction. We study the global well-posedness of solutions and investigate analytically and numerically the equilibrium solutions. We show that there exist unique equilibria supported on a ball of R n . By using the method of moving planes we prove that such equilibria are radially symmetric and monotone in the radial coordinate. We perform asymptotic studies for the limiting cases when the exponent of the power-law attraction approaches infinity and a Newtonian singularity, respectively. Numerical simulations suggest that equilibria studied here are global attractors for the dynamics of the aggregation model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.