Temporal variations in the spatial distribution of fine root mass were studied in a 19-year-old teak plantation in a dry tropical region. The soil block method was used to investigate fine root dynamics. Quantification of fine root mass was achieved in terms of live teak roots (separated by diameter), dead teak roots, teak root bark, herb roots, and fragmented soil organic matter. The annual mean fine root biomass was 5420 kg•ha−1 and the net production was 5460 kg•ha−1•year−1. The bulk of the root mass was distributed at a depth of 10–30 cm and roots ≤2 mm constituted one-half or more of the total root biomass. Maximum live root growth occurred during the rainy season. All root sizes showed similar bimodal seasonal patterns, but the maximum:minimum ratio generally declined with greater root size.
In present study free radical scavenging potential of aerial parts and root of Phyllanthus fraternus was investigated. Extraction was done in water and ethanol. Total antioxidant capacity was measured by DPPH free radical scavenging method; ethanolic extract of aerial part was most potent in activity with 50% inhibition at 258 μg/mL concentration. Lipid peroxidation (LPO) was measured in terms of thiobarbituric acid-reactive substances (TBARS) by using egg-yolk homogenates as lipid-rich media with EC50 of aerial part (ethanolic) 1522 μg/mL which was found to be most active. Superoxide (SO) radical scavenging activity was measured using riboflavin-light-nitroblue tetrazolium assay. Ethanolic and aqueous extract of both aerial part and root was almost similar in superoxide radical scavenging activity. Reducing power was determined on the basis of Fe3+-Fe2+ transformation in the presence of extract. Total phenolic and flavonoid contents were also measured by spectroscopic method. Results showed that the ethanolic fraction of aerial part is most active towards antioxidant potential and this activity is related to its polyphenolic content and reducing potential. Thus, P. fraternus extract can be used as potent natural antioxidant.
Antagonism between Fusarium udum Butler causing wilt of pigeon-pea (Cajanus cajan (L.) Millsp.) and the saprophytic microflora of the root region of the host was studied with reference to colony interaction, hyphal interference, volatile and non-volatile metabolites and staling growth products. Studies were extended to screen potential antagonists against the wilt pathogen in soil.Aspergillus flavus, A. niger, A. terreus, Penicillium citrinum and Micromonospora globosa (an actinomycete) were antagonistic against F. udum, whereas the pathogen parasitized and killed Aspergillus luchuensis, Cunninghamella echinulata, Curvularia lunata, Mortierella subtilissima and Syncephalastrum racemosum.
From the whole plant of Eclipta alba, a new triterpene saponin, named eclalbatin, together with alpha-amyrin, ursolic acid and oleanolic acid were isolated. The structure of eclalbatin has been established as 3-O-beta-D-glucopyranosyl-3-beta-hydroxy-olean-12-en-28-oic acid, 28-O-beta-D-arabinopyranoside (1) on the basis of chemical and spectral data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.