Scientific theories are hard to find, and once scientists have found a theory H, they often believe that there are not many distinct alternatives to H. But is this belief justified? What should scientists believe about the number of alternatives to H, and how should they change these beliefs in the light of new evidence? These are some of the questions that we will address in this paper. We also ask under which conditions failure to find an alternative to H confirms the theory in question. This kind of reasoning (which we call the No Alternatives Argument) is frequently used in science and therefore deserves a careful philosophical analysis.
The Deutsch-Wallace-Everett programme is conceptually incoherent since its viability rests upon a notion of decoherence that conflicts with its own fundamental precepts in two respects. These problems are not alleviated by invoking the notion of emergent or robust structure, and are argued to be significant enough to cast doubt upon the viability of the entire neo-Everettian enterprise as it now stands.
String theory has played a highly influential role in theoretical physics for nearly three decades and has substantially altered our view of the elementary building principles of the Universe. However, the theory remains empirically unconfirmed, and is expected to remain so for the foreseeable future. So why do string theorists have such a strong belief in their theory? This book explores this question, offering a novel insight into the nature of theory assessment itself. Dawid approaches the topic from a unique position, having extensive experience in both philosophy and high-energy physics. He argues that string theory is just the most conspicuous example of a number of theories in high-energy physics where non-empirical theory assessment has an important part to play. Aimed at physicists and philosophers of science, the book does not use mathematical formalism and explains most technical terms.
This article investigates the implications of string theory for the conception of scientific theory confirmation. The classical understanding of theory confirmation is based on the assumption that scientific theory building is underdetermined by the available empirical data. Several arguments are presented, which suggest a devaluation of this 'principle of scientific underdetermination' in the context of string theory. An altered conception of scientific progress emerges, that is not based on the notion of theory succession.
According to an argument by Colin Howson, the no-miracles argument (NMA) is contingent on committing the base-rate fallacy and is therefore bound to fail. We demonstrate that Howson's argument only applies to one of two versions of the NMA. The other version, which resembles the form in which the argument was initially presented by Putnam and Boyd, remains unaffected by his line of reasoning. We provide a formal reconstruction of that version of the NMA and show that it is valid. Finally, we demonstrate that the use of subjective priors is consistent with the realist implication of the NMA and show that a core worry with respect to the suggested form of the NMA can be dispelled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.