Albendazole resistance was induced in three different Giardia cultures following growth in successively increasing amounts of drug. One of the lines was previously resistant to high levels of metronidazole and was able to grow in 2 microM albendazole. The other two survived exposure to 0.8 microM, while normally lethal levels of albendazole against Giardia in vitro were around 0.1-0.2 microM. Albendazole-resistant Giardia were cross-resistant to parbendazole. Major chromosome rearrangements were evident in the line resistant to 2 microM albendazole and IFA with antitubulin antibody indicated differences in the cytoskeleton, particularly the median body, between sensitive and resistant lines. This implicates the cytoskeleton in the mechanism of resistance. Substitution of Tyr for Phe is a consistent beta-tubulin amino acid change in the benzimidazole-resistant helminths and fungi so far analyzed. PCR primers were designed from the published Giardia beta-tubulin gene sequence and spanned the region encoding Phe at position 200. Sequence data from albendazole-resistant Giardia demonstrated that the beta-tubulin gene did not carry a mutation in the codon for amino acid 200. These data suggest that Phe at position 200 in beta-tubulin is not necessary for benzimidazole resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.