X-ray Microfluorescence (XRMF) analysis uses a finely collimated beam of X-rays to excite fluorescent radiation in a sample (Nichols & Ryon 1986). Characteristic fluorescent radiation emanating from the small interaction volume element is acquired using an energy dispersive detector placed in close proximity to the sample. The signal from the detector is processed using a computer-based multi-channel analyzer.XRMF imaging is accomplished by translating the sample through the small X-ray beam in a step or continuous raster mode. As the sample is translated, a pixel by pixel X-ray intensity image is formed for each chemical element in the sample. The resulting digitized image information for each element is stored for subsequent processing and/or display. The images, in the form of elemental maps representing identical areas, may be displayed and color coded by element and/or intensity and then overlayed for spatial correlation.The present study of parameters affecting the performance of an X-ray microfluorescence system has shown how such systems use X-ray beams with effective spot sizes less than 100 micrometers to bridge the gap in analytical capabilities between predominately surface micro analytical techniques such as SEM/EDX and bulk analytical methods such as standard XRF analysis. The combination of XRMF spectroscopy with digital imaging allows chemical information to be obtained and mapped from surface layers as well as from layers or structures beneath the sample surface. Simultaneously, it provides valuable high resolution chemical information in a readily interpreted visual form which displays the homogeneity within a given layer or structure. XRMF systems retain the advantages of minimal sample preparation, non-destructive analysis and high sensitivity inherent to XRF methods.
High‐purity copper samples were irradiated with high‐energy protons and neutrons. The concentration of transmutational elements was measured by means of the total reflection x‐ray fluorescence method using synchrotron radiation. The spectra of non‐irradiated samples were substracted from the spectra of the irradiated samples. By this evaluation method, the minimum detectable concentration was as low as 1.5 μg g−1 in a copper matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.