All six NXE:3100, 0.25 NA EUV exposure systems are in use at customer sites enabling device development and cycles of learning for early production work in all lithographic segments; Logic, DRAM, MPU, and FLASH memory. NXE EUV lithography has demonstrated imaging and overlay performance both at ASML and end-users that supports sub27nm device work. Dedicated chuck overlay performance of <2nm has been shown on all six NXE:3100 systems.The key remaining challenge is productivity, which translates to a cost-effective introduction of EUVL in high-volume manufacturing (HVM). High volume manufacturing of the devices and processes in development is expected to be done with the third generation EUV scanners -the NXE:3300B. The NXE:3300B utilizes an NA of 0.33 and is positioned at a resolution of 22nm which can be extended to 18nm with off-axis illumination. The subsystem performance is improved to support these imaging resolutions and overall productivity enhancements are integrated into the NXE platform consistent with 125 wph. Since EUV reticles currently do not use a pellicle, special attention is given to reticle-addeddefects performance in terms of system design and machine build including maintenance procedures.In this paper we will summarize key lithographic performance of the NXE:3100 and the NXE:3300B, the NXE platform improvements made from learning on NXE:3100 and the Alpha Demo Tool, current status of EUV sources and development for the high-power sources needed for HVM.Finally, the possibilities for EUV roadmap extension will be reviewed.
We present a dynamic electrochemical etching technique for preparing scanning tunneling microscope (STM) tips. Current vs. potential measurements have led to the development of a dynamic technique which provides atomic resolution and which is faster and more reliable, reproducible and productive than conventional static methods. Tungsten tips are prepared in a 2M NaOH film while the electrolyte is flowing through the film, keeping concentrations and etching rate constant. In order to apply the STM in liquids, an appropriate tip insulating technique is developed so as to prevent Faradaic current. A molten thermoplastic wax film is used for reproducible insulation. The STM tips and insulated tips were characterized by optical microscopy, scanning electron microscopy, STM, and electrochemical STM. Imaging with atomic resolution was demonstrated on HOPG.
This paper describes the principle and performance of FlexRay, a fully programmable illuminator for high NA immersion systems. Sources can be generated on demand, by manipulating an array of mirrors instead of the traditional way of inserting optical elements and changing lens positions. On demand (freeform) source availability allows for reduction in R&D cycle time and shrink in k1. Unlimited tuning allows for better machine to machine matching. FlexRay has been integrated in a 1.35NA TWINSCAN exposure system. We will present data of FlexRay using measured traditional and freeform illumination sources. In addition system performance qualification data on stability, reproducibility and imaging will be shown. The benefit of FlexRay for SMO enabling shrink is demonstrated using an SRAM example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.