The activities of different xenobiotic-metabolizing enzymes in liver subcellular fractions from Wistar rats exposed to a glyphosate (GLP)-based herbicide (Roundup full II) were evaluated in this work. Exposure to the herbicide triggered protective mechanisms against oxidative stress (increased glutathione peroxidase activity and total glutathione levels). Liver microsomes from both male and female rats exposed to the herbicide had lower (45%-54%, P < 0.01) hepatic cytochrome P450 (CYP) levels compared to their respective control animals. In female rats, the hepatic 7-ethoxycoumarin O-deethylase (a general CYP-dependent enzyme activity) was 57% higher (P < 0.05) in herbicide-exposed compared to control animals. Conversely, this enzyme activity was 58% lower (P < 0.05) in male rats receiving the herbicide. Lower (P < 0.05) 7-ethoxyresorufin O-deethlyase (EROD, CYP1A1/2 dependent) and oleandomycin triacetate (TAO) N-demethylase (CYP3A dependent) enzyme activities were observed in liver microsomes from exposed male rats. Conversely, in females receiving the herbicide, EROD increased (123%-168%, P < 0.05), whereas TAO N-demethylase did not change. A higher (158%-179%, P < 0.01) benzyloxyresorufin O-debenzylase (a CYP2B-dependent enzyme activity) activity was only observed in herbicide-exposed female rats. In herbicide-exposed rats, the hepatic S-oxidation of methimazole (flavin monooxygenase dependent) was 49% to 62% lower (P < 0.001), whereas the carbonyl reduction of menadione (a cytosolic carbonyl reductase-dependent activity) was higher (P < 0.05). Exposure to the herbicide had no effects on enzymatic activities dependent on carboxylesterases, glutathione transferases, and uridinediphospho-glucuronosyltransferases. This research demonstrated certain biochemical modifications after exposure to a GLP-based herbicide. Such modifications may affect the metabolic fate of different endobiotic and xenobiotic substances. The pharmacotoxicological significance of these findings remains to be clarified.
Cadmium (Cd) is an industrial and environmental pollutant that produces toxic effects on gametogenesis, pre- and post-implantation embryos, and the placenta. Because the effects of acute Cd intoxication on the placenta are not well understood, we investigated changes in its glycosylated components in Cd treated dams at days 4, 7, 10 and 15 of gestation using lectin histochemistry. CdCl was administered to pregnant rats; control animals received sterile normal saline. Placentas were processed for DBA, Con A, SBA, PNA, UEA-I, RCA-I and WGA lectin histochemistry to evaluate changes in the carbohydrate pattern of the placenta that might modify cell interactions and contribute to embryonic alterations. Lectin binding was analyzed in the yolk sac; trophoblast giant cells; trophoblast I, II and III; spongiotrophoblast cells and endovascular trophoblast cells in the chorioallantoic placenta. Our lectin binding patterns showed that Cd caused alteration of SBA and DBA labeling of trophoblast-derived cells, which suggested increased expressions of α and β GalNAc. Cd also caused decreased UEA-1 binding affinity, which indicated fewer α-L-Fuc residues in placentas of Cd treated dams. The nonreactivity in trophoblast I of the control placentas incubated with Con-A contrasted with the labeling in placentas of experimental dams, which indicated increased expression of terminal α-D-Man, and α-D-Glc residues. We found that Cd altered the reactivity of placenta to several lectins, which indicated modification of the glycotype presented by the fetal component of the placenta. We report that Cd exerts a deleterious effect on the glycosylation pattern of the placenta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.